ChemThink: Covalent Bonding

Covalent bonding forms when atoms are Share electrons.
When two atoms get close enough, the nucleus attracts the other atom's (Protons / Neutrons / Electrons).
Before bonding, the atom's electrons spend most of their time the nuclei of each atom. Once bonded, the electrons spend most of their time the two nuclei.
Atoms must be able to hold onto their own <u>electrons</u> , while pulling attracting another atom's electron.
Covalent bonds form between two <u>nonmetals</u> .
When atoms move closer, the potential energy (<u>Increases</u>). At a certain point the potential energy <u>increases</u> if you try
and move the atoms closer because the <u>protons</u> in each nucleus are <u>repelling</u> each other.
The ideal distance between the atoms is known as the bond length Lower in energy = most stable
Bond Type Draw an Example # of paired e Total # of Strongest/

Bon	d Type	Draw an Example	# of paired e	Total # of e shared	Strongest/ Weakest
S	ingle	H-H		2	weakest
Do	ouble	0=0	- A	4	
Т	riple	N=N	3	9	Strongest

Naming Simple Covalent Compounds:

The ending of the name of the second element is changed to				
Prefixes are added to the beginning of some element names, and are used				
to tell us	how	mani		atoms of that
element are present in the <u>Molecule</u> .				

The following prefixes are used in covalent compounds:

Prefix	Means	Prefix	Means
mono-	1	hexa-	ی
di-	2	hepta-	7
tri-	3	octa-	8
tetra-	4	nona-	9
penta-	5	deca	10

Exception: You never use the prefix ______ if there is only one atom of the ______ element.

Examples:

N ₂ O	dinitrogen monoxide
NO ₂	nitrogen dioxide
N ₂ O ₄	dinitrogen tetraoxide
N ₂ O ₃	dinitrogen trioxide
NO	nitrogen monoxide
SaCla	Disulfur dichloride
Son	Sulfur dioxide
5,0,	Disulfur trioxide
SãO	Disulfur monoxide
503	Sulfur trioxide

* complete problem set when finished*