\qquad

1) Chromium-48 decays. Afte 6 half-lives, what fraction of the original nuclei would remain?

$$
\frac{1}{2}=\frac{1}{64}
$$

2) Fluorine-21 has a half-life of approximately 5 seconds. What fraction of the original nuclei would remain after 1 minute? $\frac{60 \text { seconds }}{5 \text { seconds }}=12$ nalf lises $\quad \frac{1}{2}=\frac{1}{4096}$

Iodine-131 has a half-life of 8 days. What fraction of the original sample would remain at the end of 32 days? $\frac{32}{8}=4$ half lives

4) The half-life of Uranium-238 is 4.5 billion years and the age of earth is 4.5×10^{9} years. What fraction of Uranium-238 that was present when Earth was formed still remains?

$$
\frac{4.5 \text { billion }}{4.5 \times 10^{9}}=1 \text { half life }=\frac{1}{2}
$$

5) A medical institution requests 1 g of bismuth-214, which has a half-life of 20 min . How many grams of bismuth-214 must be sent if the shipping time is 2 h ?

$$
\frac{120 \mathrm{~min} \text { total }}{20 \mathrm{~min} / \mathrm{halflife}}=6 \text { half lifes } \quad \frac{1}{2^{6}}=\frac{1}{64} \quad \mathrm{~g} \times \underbrace{\frac{64}{1}}_{\substack{\text { fleped } \\ \text { becour } \\ \text { tourn ongingl }}}=64 \mathrm{~g}
$$

6) (Warning! This problem contains completely made up numbers!) An archeologist uncovers a human skeleton and would like to know how long it has been there. The archaeologist knows that a living human's bones contain about 8 grams of C-14. C-14 has a half-life of about 5000 years. If the skeleton
contains only 1 g of $\mathrm{C}-14$, how old is it?

$$
\frac{1 \mathrm{~g}}{8 \mathrm{~g}}=\frac{1}{8} \rightarrow 3 \text { half lives }
$$

5,000 years $\times 3=15,000$ years total
7) According to the graph pictured here, what is the half-life of uranium- 238 ?

8) If a rock sample had only 20% of its original amount of U-238 left, how old is the rock?

