Charles' Law

-States that volume occupied by a fixed amount of gas is directly proportional to its temperature, if the pressure remains constant.
-In other words, [Kelvin] temperature and volume have a direct relationship
-This means as one variable increases, the other also increases

Charles's Law Equation

$$
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}
$$

TEMPERATURE MUST BE KELVIN! -Why?

Example Problem 1

A balloon inflated in a room at 297 K has a volume of 4.00 L . The balloon is then heated to a temperature of 331 K . What is the new volume if the pressure remains constant?

$$
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}
$$

Example Problem 1

A balloon inflated in a room at 297 K has a volume of 4.00 L . The balloon is then heated to a temperature of 331 K . What is the new volume if the pressure remains constant?

$$
\begin{array}{lll}
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \begin{array}{ll}
\mathrm{V}_{1}=4.00 \mathrm{~L} \\
\mathrm{~T}_{1}=297 \mathrm{~K} & \frac{4.00}{297}=\frac{V_{2}}{331} \\
\begin{array}{l}
\mathrm{V}_{2}=?
\end{array} & \begin{array}{l}
\text { (CROSS } \\
\text { MULTPLY) }
\end{array} \\
\mathrm{T}_{2}=331 \mathrm{~K} & 4.00 \mathrm{~L})(331 \mathrm{~K})=\left(\mathrm{V}_{2}\right)(297 \mathrm{~K}) \\
4.46 \mathrm{~L}=V_{2}
\end{array}
\end{array}
$$

Example Problem 2

200 mL of air at $-20^{\circ} \mathrm{C}$ is heated to $40^{\circ} \mathrm{C}$. What is the new volume?

$$
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \quad \mathrm{~K}=\mathrm{C}+273.15
$$

Example Problem 2

200 mL of air at $-20^{\circ} \mathrm{C}$ is heated to $40^{\circ} \mathrm{C}$. What is the new volume?

$$
\begin{array}{lll}
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} & \begin{array}{ll}
V_{1}=200 \mathrm{ml} & V_{1}=200 \mathrm{ml} \\
T_{1}=-20^{\circ} \mathrm{C} & \mathrm{~T}_{1}=253.15 \mathrm{~K} \\
& \mathrm{~V}_{2}=? \\
\mathrm{~T}_{2}=40^{\circ} \mathrm{C} & \mathrm{~V}_{2}=? \\
T_{2}=313.15 \mathrm{~K}
\end{array}
\end{array}
$$

You must convert all temperatures to Kelvin, before plugging into the equation.

Example Problem 2

200 mL of air at $-20^{\circ} \mathrm{C}$ is heated to $40^{\circ} \mathrm{C}$. What is the new volume?

$$
\begin{array}{lll}
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} & \begin{array}{l}
V_{1}=200 \mathrm{ml} \\
\mathrm{~T}_{1}=253.15 \mathrm{~K}
\end{array} & \begin{array}{l}
\mathrm{V}_{2}=? \\
\mathrm{~T}_{2}=313.15 \mathrm{~K}
\end{array}
\end{array}
$$

$$
247 \mathrm{~mL}=\mathrm{V}_{2}
$$

Example Problem 3

What is the temperature of a 2.3 L balloon if it shrinks to a volume of 0.632 L when it is dipped into liquid nitrogen at a temperature of 77 K ?

$$
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}
$$

Example Problem 3

What is the temperature of a 2.3 L balloon if it shrinks to a volume of 0.632 L when it is dipped into liquid nitrogen at a temperature of 77 K ?

$$
\begin{array}{lll}
\mathrm{V}_{1} \\
T_{1} & =\frac{V_{2}}{T_{2}} & \begin{array}{l}
V_{1}=2.3 \mathrm{~L} \\
T_{1}=
\end{array} \\
\begin{array}{l}
V_{2}=0.632 \mathrm{~L} \\
T_{2}=77 \mathrm{~K}
\end{array} & \begin{array}{l}
(2.3)(77)=(0.63)\left(T_{1}\right) \\
T_{1}
\end{array} & \begin{array}{c}
\text { (CROSS } \\
\text { MULTIPLY) }
\end{array} \\
T_{1}=280 \mathrm{~K}
\end{array}
$$

