Chemical Bonding and Octet Rule

1. What is a chemical bond?

2. Describe the octet rule (and any exceptions).

3. What family of elements does not form chemical bonds? Explain why this family does not bond.

4. The type of bonding that occurs depends on the difference in ______ of the atoms in the bond.

5. Complete the table below:

Type of Bond	E.N difference
	Large (>1.7)
	Small (<1.7)

Use the table below and chart above (#5) to label the following compounds as covalent or ionic:

The laste below gives I along values for Electronegativity.																		
H 2.1																	He 	
Li 1.0	Be 1.5											В 2.0	C 2.5	N 3.0	0 3.5	F 4.0	Ne 	
Na 0.9	Mg 1.2											Al 1.5	Si 1.8	P 2.1	S 2.5	CI 3.0	Ar 	
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr 	
Rb 0.8	Sr 1.0	Y 1.2	Zr. 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	ln 1.7	Sn 1.8	Sb 1.9	Те 2.1	І 2.5	<u>Хе</u> . 	
Cs 0.7	Ba 0.9	La-Lu 1.1-1.2	Нf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	<mark>ار</mark> 2.2	Pt 2.2	Au 2.4	Hg 1.9	TI 1.8	Pb 1.8	Ві 1.9	Po 2.0	At 2.2	Rn 	
Fr 0.7	Ra 0.9	Ac-Lr 1.1-1.7																
	6. NH ₃				7. MgO						8. Cl ₂						9. HCI	
10.H ₂ O					11. NaCl 12.							CH ₄					3. NO ₂	

The table below gives Pauling Values for Electronegativity:

Use the octet rule to answer complete the following questions:

14. To achieve a full valence shell, Hydrogen can gain	electrons or lose	electrons.
15. To achieve a full valence shell, Magnesium can gain	electrons or lose	electrons.
16. To achieve a full valence shell, Nitrogen can gain	electrons or lose	_ electrons.