Boyle's Law Worksheet

Na	ime
----	-----

Robert Boyle observed the relationship between the pressure and volume for a gas sample. These two variables are **inversely proportional**. This means that when the pressure goes up the volume goes down. This is expressed in the equation $P_1 \times V_1 = P_2 \times V_2$, which is known as **Boyle's Law**. The relationship between pressure and volume is only observed when the temperature and amount of gas particles do not change. The graph below shows this relationship.

USEFUL EQUATIONS

$P_1 \times V_1 = P_2 \times V_2$	1.00 atm = 760 mmHg
1.00 atm = 101300 Pa	1.00 atm = 760 torr
1.00 atm = 101.3 kPa	1.00 atm = 14.7 psi

example

A gas occupies a volume of 5.4 L at a pressure of 1.06 atm. What volume will the gas occupy if when the pressure is increased to 1.52 atm? Assume the temperature does not change.

- list the variables:	$V_1 = 5.4 L$	$P_1 = 1.06$ atm	$P_2 = 1.52$ atm	
- substitute into the equation:	$P_1 \times V_1 = P_2 \times V_2$	$(1.06 \text{ atm}) \times (5.4 \text{ L}) =$	$(1.52 \text{ atm}) \times V_2$	
- solve:	$\frac{(1.06 \operatorname{arr}) \times (5.4 \mathrm{L})}{1.52 \operatorname{arr}}$	$=\frac{(1.52 \text{ atsq.}) \times V_2}{1.52 \text{ atsq.}}$	$V_2 = 3.8 \mathrm{L}$	

Solve the following problems.

- 1. According to the graph, when the pressure of a gas sample is decreased what happens to the volume?
- 2. The gas in a 600 mL balloon has a pressure of 1.20 atm. If the temperature remains constant, what will be the pressure of the gas in the balloon when it is compressed to 400 mL?
- 3. An oxygen container has a volume of 48 mL and a pressure of 420 kPa. What is the volume of this gas when the pressure is 105 kPa?
- 4. A tank of compressed CO_2 has a pressure of 850 psi and a volume of 150 mL. What is the volume of this gas when the pressure is 45 psi?
- 5. A scuba tank has a pressure of 19,300 kPa and a volume of 10.3 L. What would be the pressure of the gas if it were transferred to a 50.0 L container?
- 6. Air fills a room with a volume of 5600 L. Atmospheric pressure is 740 torr. What will be the pressure if all of the gas is pumped into an 80 L tank? Convert this pressure to kPa.
- 7. A sample of 24 L of helium gas is stored in a cylinder at a pressure of 110 lb/in². The helium is transferred to a container with a volume of 15 L. Assuming the temperature has not changed what will be the pressure?
- 8. An air compressor has a volume of 110 L. What volume of gas is pumped into the tank if the pressure goes from 750 torr to a pressure of 145 psi?

1) If + increases
3)
$$P_1 V_1 = P_2 V_2$$

1: $2(600) = P_2^{-1}(100)$
The P_1 V_2 P_2 V_2
400 Yos
 $P_2 = 1.8 atm$
3) $P_1 V_1 = P_2 V_2$
400 Yos
 $P_2 = 1.8 atm$
3) $P_1 V_1 = P_2 V_2$
400 Yos
 $V_3 = 103 \text{ mL}$
4) $P_1 V_1 = P_2 V_2$
 $V_3 = 103 \text{ mL}$
4) $P_1 V_1 = P_2 V_2$
 $V_3 = 103 \text{ mL}$
5) $P_1 V_1 = P_2 V_2$
 $V_4 = 2.833 \text{ mL}$
5) $P_1 V_1 = P_2 V_2$
 $V_4 = 2.833 \text{ mL}$
5) $P_1 V_1 = P_2 V_2$
 $V_4 = 2.833 \text{ mL}$
5) $P_1 V_1 = P_2 V_2$
 $V_4 = 2.6000 = P_2(56)$
 $V_2 = 3.975 \cdot 8 \text{ kB}$
(c) $P_1 V_1 = P_2 V_2$
 $T_{43} 0000 \text{ forr x} \frac{101.3 \text{ kB}}{766 \text{ forr}} = 5389.06 \text{ km}^2$
 $T_{50} \text{ forr} x \frac{101.3 \text{ kB}}{766 \text{ forr}} = 5389.06 \text{ km}^2$
7) $P_1 V_1 = P_2 V_2$
 $P_2 = 174 \text{ 15}/m^3$
8) $P_1 V_1 = P_2 V_2$
 $T_{10} \text{ forr} x \frac{101.78 \text{ KB}}{1.0706} = 14.5 \text{ point}^2$
 $T_{10} \text{ forr} x \frac{101.78 \text{ m}}{105} = 14.5 \text{ point}^2$
 $V_2 = 11 \text{ L}$