
- □Observations and Inferences
- □ Chemistry
- ■Scientific Method

UNIT OBJECTIVES

- Know the definition of chemistry and be knowledgeable about specific disciplines of chemistry
- Understand the nature of the scientific method and distinguish among hypothesis, theory, and law

SCIENTIFIC

A quick refresher course featuring... T-Swift!

1. State the problem/question Should Sean date Taylor Swift?

2. Make observations/research

Pros:	Cons:
Pretty	Long list of ex-lovers
Rich **	Reporters
Talented	May be in a Relationship
Lives in Nashville	

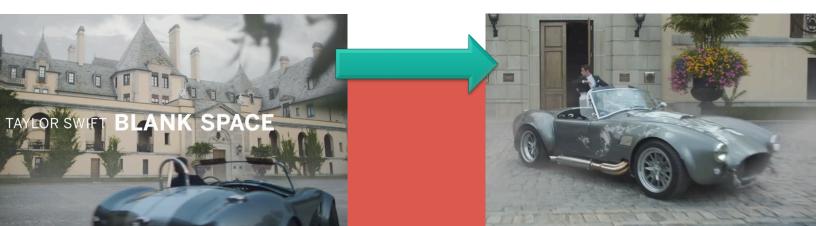
3. Form a hypothesis
If Sean dates T-Swift, then he will be happier

4. Experiment

Independent Variable: Dating Taylor

Dependent Variable: Happieness Level
Control: Not dating Taylor

Constants: Personalities

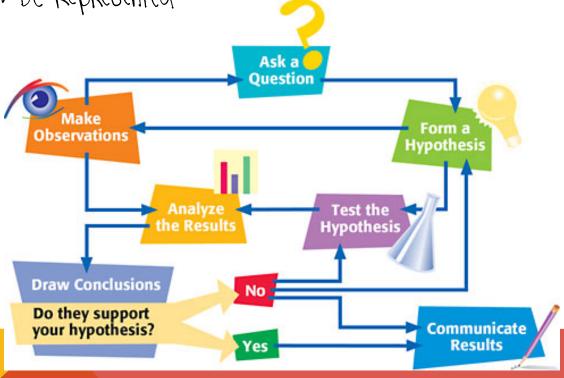

5. Collect and analyze data

- Measure his happiness from the control. (No date with Taylor)
- Measure his happiness during the experiment (Date with Taylor)
- Compare happiness.

5. Collect and analyze data

- Measure his happiness from the control. (No date with Taylor)
- Measure his happiness during the experiment (Date with Taylor)
- Compare happiness.

6. Form your conclusion


My hypothesis was refuted, Sean was <u>not</u> happier dating Taylor.

7. Repeat experiment Bring in a new guy & start again

* the scientific method does not have to go in this order, & not every step needs to be represented

Directions: Put an X next to the statements that describe a hypothesis.

prediction.

Scientific Hypothesis: Tentative explanation that can be tested & is based on observations

What is a Hypothesis?

A. A tentative explanation. H. Included as part of all scientific investigations. B. A statement that can be tested. I. Used to prove whether some is true. C. An educated guess. J. Eventually becomes a theory, then a law. K. May guide an investigation. D. An investigative question. L. Used to decide what data to pay E. A prediction about the outcome of an investigation. attention to and seek. M. Partly developed from imagination F. A question asked at the beginning of an investigation. and creativity. G. A statement that may lead to a

N. **MUST** be in the form of "if...then..."

Question: Will giving my teacher chocolate reduce the amount of homework I have?

Independent Variable: The variable you are sing x-axis

Dependent Variable: The variable you measuring y-axis

Question: Will giving my teacher chocolate reduce the amount of homework I have?

Hypothesis: Giving Me. Shomshor chocolate will result in no homework

Question: If I study will I get a better grade in chemistry?

Independent Variable: The variable you are sing

Dependent Variable: The variable you measuring

Question: If I study will I get a better grade in chemistry?

Hypothesis: Studying every night will result in earning on A in chemistry.

Scientific Theory: Evidence based explanations based on related observations of phenomena or events

Examples: Big-Bang-Theory.
Atomic Structure

Beneral Relativity—
What is a Theory?

A 'theory' in science has a different meaning than the 'theories' we talk about in everyday life. **Directions:** Put an X next to the statements that describe a theory.

	_ A. Theories include observations.	G. Theories are inferred explanations, strongly supported by evidence.
	B. Theories are "hunches" scientists have.	H. A scientific law has been proven and a theory has not.
	C. Theories can include personal beliefs or opinions.	I. Theories are used to make predictions
/	_ D. Theories have been tested many times.	J. Laws are more important to science than theories.
	_ E. Theories are incomplete, temporary ideas.	K. A hypothesis is upgraded to a theory then a law.
	F. A theory never changes.	

Scientific Law: Based on Repeated experimental observation that describe an aspect of the physical universe

A 'law' in science has a different meaning than the 'laws' we talk about in everyday life.

Directions: Put an X next to the statements that describe a law.

A. Laws are theories that have	D. Laws are descriptions of a physical
'graduated', and once were a	event.
hypothesis.	E. Laws are more important to science
B. A law can be framed as an equation.	than theories.
	F. A scientific law has been proven and
C. Laws are explanations of a physical	a theory has not.
event.	G. A law never changes.