

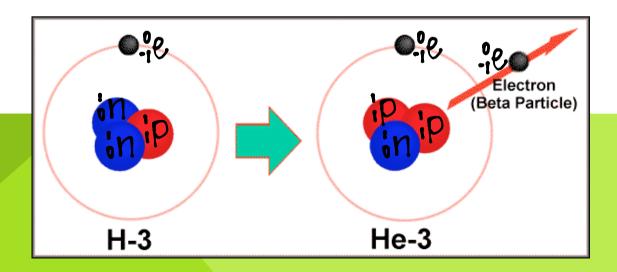
Alpha particle: 2 nwtrons & 2 protons

- Effect on mass number: During by 4
- Effect on atomic number: Durkusus by 2

B

Beta Radiation

• Beta particle:


9

- Effect on mass number: Does not effect
- Effect on atomic number: Increases by 1

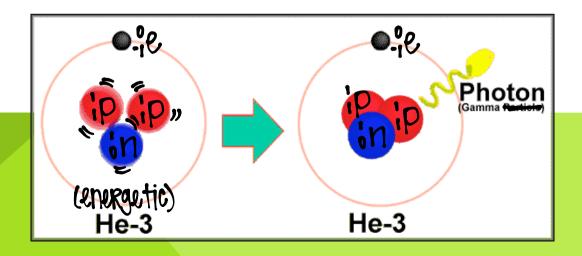
Beta Radiation

 How does an electron come out of the nucleus?

A neutron decays into a proton (stays in the nucleus) & an electron (leaves the nucleus)

Gamma Radiation

Gamma emission:



- Effect on mass number: Does not effect
- Effect on atomic number: Does not effect

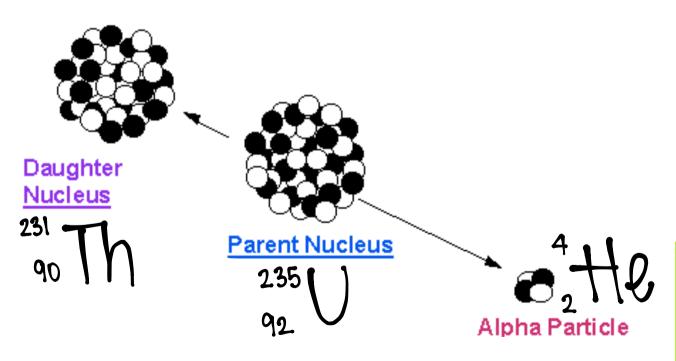
Gamma Radiation

 Why is it gamma "emission" instead of gamma "particle"?

In gamma decay energy is released; energy is not a particle

Nuclear Equations

 Write the nuclear equation for the alpha decay of uranium-235.

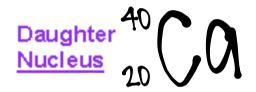

$$\begin{array}{c} 235 \\ 92 \end{array} \longrightarrow \begin{array}{c} 4 \\ 2 \end{array} \longrightarrow \begin{array}{c} 4 \\ 2 \end{array} \longrightarrow \begin{array}{c} 231 \\ 90 \end{array} \longrightarrow \begin{array}{c} 1 \\ 1 \end{array} \longrightarrow \begin{array}{c} 231 \\ 1 \end{array} \longrightarrow \begin{array}{c} 1 \\ 1 \end{array} \longrightarrow \begin{array}{c} 231 \\ 1 \end{array} \longrightarrow \begin{array}{c} 1 \\ 1 \end{array} \longrightarrow \begin{array}{c} 231 \\ 1 \end{array} \longrightarrow \begin{array}{c} 1 \\ 1 \end{array} \longrightarrow \begin{array}{c} 231 \\ 1 \end{array} \longrightarrow \begin{array}{c} 1 \\ 1 \end{array} \longrightarrow \begin{array}{c} 231 \\ 1 \end{array} \longrightarrow \begin{array}{c} 1 \\ 1 \end{array} \longrightarrow \begin{array}{c} 231 \\ 1 \end{array} \longrightarrow \begin{array}$$

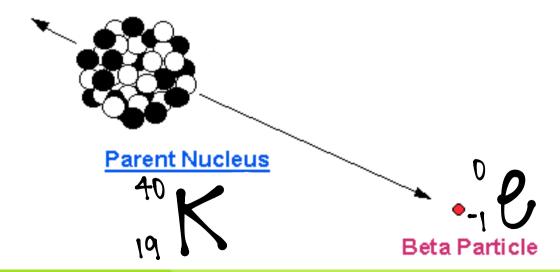
top: 235=4+x

bottom: 92=2+x

Nuclear Equations

 Write the nuclear equation for the alpha decay of uranium-235.



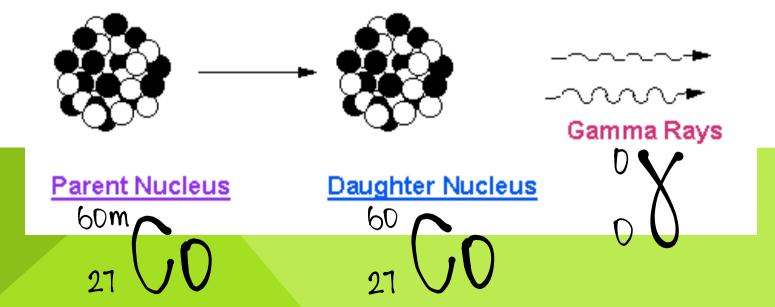

Nuclear Equations

 Write the nuclear equation for the beta decay of potassium-40.

Nuclear Equations

 Write the nuclear equation for the beta decay of potassium-40.

Nuclear Equations


 Write the nuclear equation for the gamma decay of cobalt-60.

$${}^{60m}_{27}C0 \rightarrow {}^{0}_{0}X + {}^{60}_{27}C0$$

top: 60 = 0+x bottom: 27 = 0+x

Nuclear Equations

 Write the nuclear equation for the gamma decay of cobalt-60.

Nuclear Equations

 Write the nuclear equation for the gamma decay of ¹⁰⁶Ag.

$${}^{10bm}_{41} + 9 \rightarrow {}^{0}_{0} \times {}^{10b}_{41} + 9$$

Nuclear Equations

 Write the nuclear equation for the alpha decay of ²²²Rn.

Nuclear Equations

 Write the nuclear equation for the beta decay of ¹⁴C.

$${}^{14}C \rightarrow {}^{0}C + {}^{14}N$$

Radiation Penetration

Radiation Type	Particle Emitted	Stopped by	Effect on Mass #	Effect on Atomic #
\sim	2 He	Paper	14	↓2
B	9°-	eerly	none	1 1
X	o energy	Lead/ 1' concrete	none	none