Unit 5.2-5.4 Rational Functions

By the end of this unit, you should be able to:
\square find the asymptotes of a rational function
\square analyze the graph of a rational function
\square graph rational functions
\square write a possible function for a rational graph

\square solve applied problems involving rational functions
\square solve rational inequalities
Assignments:

5.2 - pg. $352 \# 23-28,29,31,33,36,37,41-51$ odd
$5.3-$ pg. $366 \#[9,13,15,18,25,33]$ (use the steps from class), $45,47,55,56$
$5.4-$ pg. $373 \# 21,23,25,29,31,33$

Review Problems
For \#1-4, find
a) Discontinuities/Holes (if any):
b) Domain:
c) Vertical Asymptote(s):
d) End Behavior Asymptote:
e) x-intercept(s) and multiplicity:
f) y-intercepts(s):
g) Graph the function.
h) Limits of the ends and near each vertical asymptote:
i) Range (if possible):
*1. $f(x)=\frac{3}{x-1}+4 \quad$ (*also list transformations)
3. $f(x)=\frac{x^{3}+x^{2}-6 x}{x^{2}+2 x}$
2. $f(x)=\frac{x^{2}+2 x-8}{x^{2}-1}$
5. Find all asymptotes: $f(x)=\frac{3 x^{4}+4}{x^{3}+3 x}$
6. Solve $\frac{x+2}{x-4} \geq 4$
7. A rational function graph has the following qualities:

- the graph crosses at the x-intercepts $(-1,0)$ and $(4,0)$
- there are asymptotes at $x=-3, x=5$, and $y=2$

Write a possible function to represent the graph.
8. A can in the shape of a right circular cylinder is required to have a volume of 250 cubic centimeters.
a) Express the amount A of material to make the can as a function of the radius r of the cylinder.
b) How much material is required if the can is of radius 3 centimeters?

