By the end of this unit, you should be able to:
\square determine whether a relation (equation or graph) represents a function
NPUT x

\square find the value of a function
\square find the domain of a function
\square find the sum, difference, product and quotient of two functions
\square find the difference quotient
\square find domain, range, intercepts, and other information from the graph or equation of a function
\square determine if a function is even or odd (from and equation or a graph)
\square determine if a function is decreasing, increasing, or constant
\square use a graph to find local maxima and local minima
\square find the average rate of change of a function
\square find the equation of the secant line

- graph all "base" functions using transformations
\square graph piecewise functions
\square build a function given a situation
\square find a composite function
\square find the domain of a composite function
\square determine whether a function is one-to-one
\square determine the inverse of a function given a graph or equation
\square graph the inverse function
Assignments:
3.1 - pg. 220 \#39bc, 41de, 43g, 45fh, 47, 51, 55, 57, 59, 61ab, 63c, 65d, 67e, 69g, 73, 75
3.2 - pg. 227 \#9, 11, 14, 23, 25
3.3 - pg. 239 \#21, 27, 29, 33, 35, 37, 41, 45, 47, 53, 59, 61, 63, 65
3.5 - pg. 261 \#27, 29, 35, 39, 46, 50, 56, 57, 59, 65d, 66e, 67f, 68g
3.4 - pg. 249 \#25, 27, 31c, 33c, 35c, 36c
3.6 - pg. 267 \#1, 7, 9, 15
6.1 - pg. 407 \#7, 9, 11ab, 17d, 19ac, 21-27odd, 33ac, 35bd, 41ab, 47, 49, 51, 53, 55, 57
6.2 - pg. 419 \#9-21odd, 33, 35, 39, 41, 49, 51, 53, 59, 61, 65

Review Problems

1. Find the domain of each function.
a) $f(x)=\frac{1}{\sqrt{x+8}}$
b) $g(x)=\frac{\sqrt{x-1}}{x^{2}-3 x-10}$
c) $h(x)=\sqrt{10+|x|}$
2. Given $f(x)=\frac{1}{x}$ and $g(x)=x^{2}+4 x-60$, find the following.
a) $(f \bullet g)(x)$
b) $(f+g)(5)$
c) $(f \circ f)(10)$
d) $(f \circ g)(x)$
e) What is the domain of $(g \circ f)(x)$?
f) Is $f(x)$ even, odd, or neither? Explain.
h) Is $f(x)$ one-to-one? Explain.
3. Graph the piecewise function. $f(x)=\left\{\begin{array}{l}2, x<-1 \\ x^{2}, x=-1 \\ \frac{1}{x}, x>-1\end{array}\right.$
g) Is $g(x)$ even, odd, or neither? Explain.
i) Is $g(x)$ one-to-one? Explain.
4. Given the functions $f(x)$ and $g(x)$, find the following.

x	-3	1	2	9
$f(x)$	4	-5	0	4

x	-6	0	2	3
$g(x)$	4	9	-3	1

a) $(f \circ g)(2)$
b) Is $g(x)$ even, odd, or neither? Explain.
c) Is $f(x)$ one-to-one? Explain.
5. Find and simplify the difference quotient of $f, \frac{f(x+h)-f(x)}{h}, h \neq 0$, for the function $f(x)=2 x^{2}+5$.
6. The function $f(x)$ is graphed below.
a) State the domain.
b) State the range.
c) List the y-intercept(s).
d) List the x-intercept(s).
e) Find $f(4)$.
f) For what values of x does $f(x)=-2$?
g) For what values of x is $f(x) \geq 0$?

Give your answer in interval notation.
h) Over what interval(s) is f decreasing?
i) Over what interval(s) is f increasing?
j) Graph $f^{1}(x)$.

k) List the transformations used to graph $F(x)=-3 f(x+4)-1$ from the original function F.
l) Graph $F(x)=-3 f(x+4)-1$.
m) Is $f(x)$ even, odd, or neither? Explain.
n) Is $f(x)$ one-to-one? Explain.
7. Verify, using compositions, that $f(x)=3 x-2$ and $g(x)=\frac{x+2}{3}$ are inverse functions, or that they are not.
8. Given $f(x)=\frac{-x+3}{8 x+5}$ is one-to-one, find
a) the inverse f^{1}
b) the domain of f^{1}
c) the range of f^{1}
9. Given $f(x)=2 x^{2}-x+1$, find the following.
a) The average rate of change from $x=2$ to $x=4$.
b) The equation of the secant line containing ($2, f(2)$) and (4, $f(4))$.
10. Suppose you wanted to make an open-topped box out of a flat piece of cardboard that is 25 " long by 20 " wide. You cut a square out of each corner, all the same size, then fold up the flaps to form the box, as illustrated below.
a) Express the volume of the box, V, as a function of the length x of the side of the square cut from each corner.
b) What is the volume if a 3-ince square is cut out?
c) Graph the volume function on your calculator. Find the value of x that maximizes the volume.

11. A right triangle has one vertex on the graph of $y=x^{2}$ at (x, y), another at the origin, and the third on the positive y-axis at $(0, y)$.
a) Express the area A of the triangle as a function of x.
b) What is the domain of A ?

