By the end of this unit, you should be able to:
\square write the first several terms of a sequence
\square use summation notation
\square find a formula for an arithmetic sequence
\square find the sum of an arithmetic sequence
\square find a formula for an geometric sequence
\square find the sum of an geometric sequence
\square determine if a sequence is arithmetic or geometric
\square determine whether a geometric series converges or diverges
\square solve annuity problems
\square write a repeated decimal as a fraction
\square prove statements use mathematical induction
\square use the binomial theorem
Assignments:

13.1 -pg. $937 \# 9,11,13,17,19,21,27,29,33,35,37,41,49,51,53,61,63,65$
$13.2-$ pg. $944 \# 13,15,17,21,23,27,31,35,39,47,49,51,58,61$
$13.3-$ pg. $954 \# 9,11,13,19-31$ odd, $33,35,37,41,45,47,49,51,55,57,67,71,77,81,85$,
$87,89,91$
:---:
13.5 - pg. $966 \# 17,21,29,31,33,35,37$

Review:

1. Write down the first 5 terms of the sequence.
a) $\left\{b_{n}\right\}=\left\{(-1)^{n+1}(2 n+3)\right\}$
b) $a_{1}=-3 \quad a_{n}=2-a_{n-1}$
2. Write out the sum.

$$
\sum_{k=1}^{3}\left(3-k^{2}\right)
$$

3. Express the sum using summation notation.

$$
2+\frac{2^{2}}{3}+\frac{2^{3}}{3^{2}}+\ldots+\frac{2^{n+1}}{3^{n}}
$$

4. Determine whether the given sequence is arithmetic, geometric, or neither. If the sequence is arithmetic, find the common difference and the sum of the first n terms. If the sequence is geometric, find the common ratio and the sum of the first n terms.
a) $\left\{b_{n}\right\}=\{4 n+3\}$
b) $\left\{d_{n}\right\}=\left\{2 n^{2}-1\right\}$
c) $\left\{u_{n}\right\}=\left\{3^{2 n}\right\}$
5. Find the sum.
a) $\sum_{k=1}^{40}(-2 k+8)$
b) $-5,-1,3,7, \ldots$,
6.
7. Find the $98^{\text {th }}$ term of $1,-1,-3,-5, \ldots$
8. Find the $9^{\text {th }}$ term of $1, \frac{1}{10}, \frac{1}{100}, \ldots$
9. Write the explicit formula for the nth term of each sequences.
a) $\frac{1}{3}, \frac{4}{3}, 3, \frac{16}{3}, \frac{25}{3}, \ldots$
b) $-\frac{1}{4}, \frac{1}{8},-\frac{1}{12}, \frac{1}{16},-\frac{1}{20}, \ldots$
10. Find a general formula for the arithmetic sequence with an $8^{\text {th }}$ term of -20 and a $17^{\text {th }}$ term of -47 .
11. Determine whether each infinite geometric series converges or diverges. If it converges, find its sum.
a) $6-4+\frac{8}{3}-\frac{16}{9}+\ldots$
b) $\sum_{k=1}^{\infty} 4\left(\frac{1}{2}\right)^{k-1}$
12. Use the Principle of Mathematical Induction to show that the given statement is true for all natural numbers.

$$
3+6+9+\ldots+3 n=\frac{3 n}{2}(n+1)
$$

12. Find the coefficient of x^{3} in the expansion of $(2 x-3)^{8}$
13. Chris gets paid once a month and contributes $\$ 200$ each pay period into his $401(\mathrm{k})$. If Chris plans on retiring in 20 years, what will be the value of his $401(\mathrm{k})$ if the per annum rate of return of the 401(k) is 10% compounded monthly?
14. Your friend has just been hired at an annual salary of $\$ 20,000$. If she expects to receive annual increases of 4%, what will be her salary as she begins her fifth year?
15. What is the fraction form of $.123123123123 \ldots$
