By the end of this unit, you should be able to:
\square convert between degrees and radians (7.1)
\square find arc length (7.1)
\square find sector area (7.1)

\square find the linear speed and angular speed of an object traveling in circular motion (7.1)
\square convert units (ex - mi/hr into $\mathrm{m} / \mathrm{sec}$) (7.1)
\square find the values of the six trigonometric functions of an angle (7.2)
\square find exact values of expressions using fundamental identities and the complimentary angle theorem (7.2)
\square use a calculator to approximate values of trigonometric functions of angles (7.3)
\square model and solve applied problems involving right triangles (7.3)
\square find exact values of trigonometric functions of all angles on the unit circle (7.3-7.4)
\square find and use coterminal angles (7.4)
\square find and use reference angles (7.4)
\square find the values of the six trigonometric functions given a point on the terminal side of angle (7.4)
\square find the quadrant in which an angle lies given signs of two trigonometric functions (7.4)
\square find the values of the six trigonometric functions given the value of one trig function and the quadrant in which the angle lies or given the values of two trig functions (7.4)
\square use periodic properties to find the values of trigonometric functions (7.5)
\square use even-odd properties to find the values of trigonometric functions (7.5)
\square simplify an expression using identities, complimentary angle theorem, periodic properties, and even-odd properties (7.2, 7.5)

By the end of this unit, you should know:
\square the unit circle
\square six ratios of a right triangle ($\sin \theta, \cos \theta$, etc.)
\square reciprocal identities
\square quotient identities
\square Pythagorean identities (all three)
\square cofunctions of complimentary angles
\square periodic properties
\square even-odd properties
\square unit conversions

Assignments:

Review Problems

1. Convert degrees to radians and radians to degrees. Give exact answers.
a) $\theta=17 \pi / 12$
b) $\theta=105^{\circ}$
c) $\theta=4$
d) $\theta=-855^{\circ}$
2. Find the exact values of each of the following.
a) $\sin \left(210^{\circ}\right)$
b) $\cos (-7 \pi / 4)$
c) $\tan \left(510^{\circ}\right)$
d) $\csc (\pi)$
e) $\sec \left(30^{\circ}\right)$
f) $\cot (7 \pi / 6)$
3. Find the exact values of the following expressions.
a) $\frac{\cos \left(35^{\circ}\right)}{\sin \left(55^{\circ}\right)}$
b) $\sec ^{2}\left(61^{\circ}\right)+\cot ^{2}\left(-29^{\circ}\right)$
c) $3 \tan (5 \pi / 4)+2 \cos (\pi)$
d) $\frac{\cos \left(45^{\circ}\right)}{\sin \left(45^{\circ}\right)}+\cot \left(45^{\circ}\right)+\frac{1}{\tan \left(45^{\circ}\right)}$
4. If $\theta=-25 \pi / 12$, a) find a coterminal angle such that $0<\theta<2 \pi$, and b) find the reference angle
5. Name the quadrant of θ for which $\tan \theta>0$ and $\cos \theta<0$.
6. Find the remaining 5 trig functions given $\sin \theta=5 / 7$ and $\sec \theta<0$. Give answer in exact form.
7. Find the exact values of each of the following given $\csc \theta=4$.
a) $\csc (-\theta)$
b) $\sin \theta$
c) $\sin (-\theta)$
d) $\csc (\theta-4 \pi)$
e) $\sec (\pi / 2-\theta)$
f) $\cot ^{2}(\theta)$
g) $\sin ^{2}(\theta)$
h) $\cos ^{2}(\theta)$
8. Approximate each value to 3 decimal places.
a) $\cos (8 \pi / 9)$
b) $\tan \left(255^{\circ}\right)$
c) $\csc (\pi / 5)$
9. The central angle of a sector measures 76°. Find the arc length and sector area. Round to 2 decimal places. 10. A yardstick is leaning against a wall. It makes an angle of 21° with the ground.
a) Find the height at which the yard stick touches the wall in inches.
b) Find the distance from the wall to the yardstick along the floor in inches.
10. A racecar has tires with diameter of 28 inches. The tires make 2500RPM. Find the speed of the racecar in mph.
11. A bicyclist has 26 inch wheels. He can travel 3 miles in 20 minutes. Find the angular speed of his wheels in rev/sec.
12. Michael is on the $86^{\text {th }}$ floor observatory of the Empire State Building (1050 ft) and spots his friend Ellie on the sidewalk below. Ellie has to look up at an angle of 57° to wave at Michael. Then Michael spots another friend Kevin on the same sidewalk directly behind Ellie. Kevin has to look up at an angle of 52° to wave at Michael. How far apart are Kevin and Ellie?
