Unit 10.1-10.5 - Polars, Complex Numbers, and Vectors
By the end of this unit, you should be able to:

- plot points using polar coordinates
\square convert between rectangular and polar coordinates

\square transform equations between polar to rectangular form
\square graph polar equations
\square convert a complex number from rectangular form to polar form
\square plot points in the complex plane
\square find products and quotients of complex numbers in polar form
\square use De Moivre's Theorem
\square find complex roots
\square graph vectors
\square find a position vector
\square add and subtract vectors algebraically
\square multiply a vector by a scalar
\square find the magnitude of a vector
\square find a unit vector
\square find a vector from its direction and magnitude
\square find the dot product of two vectors
\square find the angle between two vectors
\square determine whether two vectors are parallel, orthogonal, or neither
\square decompose a vector into two orthogonal vectors
\square compute work
Assignments:
10.1 - Polar Coordinates - pg. 721 \#19-45odd, 55-61odd, 67, 69, 75, 79
10.2 - Polar Graphs - pg. 736 \#13, 17, 21, 25, 29-36, 37-49odd, 50
10.3 - Complex Polar Plane - pg. 744 \#11, 13, 23, 27, 33, 37, 41, 43, 49, 53, 57, 58
10.4 - Vectors - pg. 755 \#7, 9, 11, 27, 29, 33, 37, 39, 41, 45, 49
10.5 - The Dot Product - pg. 763 \#7, 9, 11, 19, 21, 25, 26, 29, 35

Review Problems

1. Plot the points.
a) $\left(-2, \frac{2 \pi}{3}\right)$
b) $\left(3,-300^{\circ}\right)$
2. Find the polar coordinates.
a) $\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$
b) $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$
3. Find the rectangular coordinates
a) $\left(5, \frac{\pi}{2}\right)$
b) $\left(-1, \frac{3 \pi}{4}\right)$
4. Graph.
a) $\theta=\frac{9 \pi}{4}$
b) $r=3-3 \cos \theta$
c) $r=2+3 \sin \theta$
d) $r=2 \sin (2 \theta)$
5. Write the polar equation in rectangular form.
a) $r=5 \cos \theta$
b) $4=r \csc \theta$
(more on the back)
6. Given $z=2\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)$ and $w=6\left(\cos 65^{\circ}+i \sin 65^{\circ}\right)$, find the following. Answer in polar form.
a) $z w$
b) $\frac{w}{z}$
c) z^{6}
7. Plot each complex number in the complex plane. Then find the complex roots in polar form as indicated.
a) $-8-8 i$ (complex cube roots)
b) $-16 i$ (complex fourth roots)
8. Let $P=(4,-2)$ and $Q=(1,2)$ and $\mathbf{w}=2 \mathbf{i}-\mathbf{j}$.
a) Vector \mathbf{v} is represented by the directed line segment $\overrightarrow{P Q}$. Write \mathbf{v} in the form $\mathbf{a i}+b \mathbf{j}$.
b) Graph $\mathbf{v}+\mathbf{w}$.
c) Find $w-3 v$.
d) Find $\|\vec{w}\|$.
e) Find $\mathbf{v} \cdot \mathbf{w}$.
f) Find the angle between \mathbf{v} and \mathbf{w}.
g) Find the projector vector \mathbf{v}_{1} of \mathbf{v} onto \mathbf{w}.
h) Find the unit vector that is in the same direction as vector \mathbf{v}.
9. Determine whether \mathbf{v} and \mathbf{w} are parallel, orthogonal, or neither.
a) $\mathbf{v}=2 \mathbf{i}+3 \mathbf{j} ; \mathbf{w}=-4 \mathbf{i}-6 \mathbf{j}$
b) $\mathbf{v}=3 \mathbf{i}-4 \mathbf{j} ; \mathbf{w}=-3 \mathbf{i}+4 \mathbf{j}$
c) $\mathbf{v}=3 \mathbf{i}-2 \mathbf{j} ; \mathbf{w}=4 \mathbf{i}+6 \mathbf{j}$
10. A cargo ship has a speed of 20 miles per hour bearing $\mathrm{S} 60^{\circ} \mathrm{W}$. The constant water current is 8 miles per hour in the direction $\mathrm{S} 60^{\circ} \mathrm{E}$. What is the actual speed (relative to land) of the boat?
11. A wagon is pulled horizontally by exerting a force of 32 pounds on the handle at an angle of 50° to the horizontal. How much work is done in moving the wagon 40 feet?
