\qquad
Find the definition in your textbook.

RELATION:

Representations of a relation:
Notice that the chart below shows the same relation in three different ways. Now it's your turn. In the second column, make a mapping diagram and graph for the ordered pairs $\{(0,-3),(2,5),(2,4),(3,-3)\}$.

	Example	Your turn
Ordered Pairs	$\{(0,-2),(0,1),(1,2),(2,1),(3,4)\}$	$\{(0,-3),(2,5),(2,4),(3,-3)\}$
Mapping Diagram		
Graph		

Find the definitions in your textbook.
DOMAIN:
RANGE:

Example: Find the domain and range of the relation in the above example.
The domain is $\{0,1,2,3\}$.
The range is $\{-2,1,2,4\}$.
Your turn. Find the domain and range of the relation in the second column above.
The domain is \qquad
The range is \qquad

Find the definition in your textbook.
FUNCTION:

Another way of defining a function is "a relation in which each input has EXACTLY one output".
Example: Determine whether the relation represents a function.
a. Domain
Range

b. Domain Range

This is a function. Each input has exactly one output.
c. $\{(-6,2),(-4,5),(-1,-7),(-4,8)\}$

This is not a function. Notice that the input -4 has two outputs, 5 and 8.
d. $\{(1,6),(2,6),(3,6),(4,6),(5,6),(6,6)\}$

This is a function. Each input has exactly one output. It is ok that the outputs are all the same!

Find the definition in your textbook.
VERTICAL LINE TEST:

Example: Determine whether the relation represents a function.

This is a function because every vertical line drawn passes through only one point on the graph.

This is not a function because at least one vertical line drawn passes through two points on the graph.

Your assignment: pg. 59 \#5, 12, 13, 16, 17, 18, 19, 20, 21

