Blus

Cumulative Review Chapters 5 & 6

Name	Keq

Diff-Algebra

#3

Write a function rule for the table.

	1/40
1	10
2	13
3	16
4	19

$$f(x) = 3x + 7$$

#6

Find the constant rate of change indicated by the graph. Then, explain what the rate of change means for the situation.

Weight of Guinea Pig

Guinea plg gains 3 ouncu each week. #1

Determine if the relation is a function. Explain how you know.

Function

Passes
vertical line
test

Each input has exactly one output.

#4

Write a function rule for the table.

	f(x)
-1	8
0	5
1	2
2	-1

$$f(x) = -3x + 5$$

#7

Use the graph to answer the following questions:

#2

Model the function with a table of values and a graph.

$$f(x) = x^{2} + 1$$

$$x + f(x)$$

$$-2 + 5$$

$$-1 + 2$$

$$0 + 1$$

$$1 + 2$$

Find the tange of the function in the graph.

Range: 1,2,5

#5

Calculate the slope of the line containing

(-1, 5) and (3, 5).

$$m = \frac{5-5}{-1-3} = \frac{6}{-4} = 0$$
zero slope

#9

Graph the linear equation (graphs at end). Tell what form the equation is in.

$$y = -\frac{5}{3}x + 4$$

$$m = -\frac{5}{3}(0, 4)$$

Graph the linear equation (graphs at end). Tell what form the equation is in.

$$y - 2 = \frac{3}{4}(x+1)$$

$$m = \frac{3}{4}(-1, 2)$$

#12

Rewrite the equation in standard form using integers.

$$y = \frac{4}{3}x + 7$$

$$\frac{3(-3x+y)=(7)^{3}}{-4x+3y=21}$$

$$4x-3y=-21$$

#15

K= 1/2

OR

$$\begin{array}{c|cccc}
0V & & & & & & & \\
\frac{4}{2} & 2 & & & & & & \\
7_2 & & 2 & 7 & & \\
2 & & 2 & 6 & 21 & \\
3 & 2 & 2 & 10 & 35 & \\
\end{array}$$

TV Does the data in the table represent a direct variation or an inverse variation?

Write an equation to model the data in the

Write the equation of the line in slope-intercept form.

#13

The theater charges \$3 per child and \$5 per adult for each show. Write an equation in standard form relating the amount of children and adults that can go to the theater if you spend \$80. Define vour variables.

#16

• Suppose y varies inversely with x. Write an equation for the inverse variation.

$$x = \frac{3}{4}, y = 28$$

$$\frac{3}{4}, \frac{38}{1} = 16$$

$$21 = 16$$

$$24 = 21$$

$$24 = 21$$

$$24 = 21$$

$$24 = 21$$

$$24 = 21$$

#=10

#11

A line passes through two points (7, 2) and (5, -6). Write an equation for the line in point-slope form. Then rewrite the equation in slope-intercept form. M = -4-2 = -2 = 4

(5,-6)
$$y+6=4(x-5)$$

Point-Slope Form: $(7,2)$ $y-2=4(x-7)$

Slope-Intercept Form: 4 = 4x - 26

#14

	•	
0.V.		t.V.
G .		Does the data in the table
子二く		represent a direct
1-0	2 35	2-35=76 variation or an inverse
	5 14	5.14=76 variation?
	10 7	10.7=70 Inverse Valiation
		and the same of

K=70 Write an equation to model the data in the

$$y = \frac{16}{x}$$

#17

· Write an equation of the direct variation that includes the point (-8, 26).

$$\frac{3}{8} = K$$

$$y = \frac{3}{4} \times$$

$$-\frac{3}{4} = K$$

Write an equation that is **perpendicular** to the given line and passes through the given point.

$$y = -3x + 9$$

$$(-1,6)$$
perpendicular slope = $\frac{1}{3}$ negative of $y - 6 = \frac{1}{3}(x + 1)$
or $y = \frac{1}{3}x + 6\frac{1}{3}$

For #8

For.

#19

• Write an equation that is **parallel** to the given line and passes through the given point.

$$y = -3x + 9$$
(2,6)
$$parallel slope = -3 \quad equal + 0$$

$$y - 6 = -3 \quad (x - 2)$$
or
$$y = -3x + 12$$

For #9

#20

predict the amount raised when the temperature is

Use your function to

Use the graph to write a

linear function.

(16,300) $y-300=33\frac{1}{3}(x-16)$ $y-300=33\frac{1}{3}(x-16)$ $y-300=\frac{100}{3}(44)$ $y-300=\frac{4400}{3}$ $y=\frac{5300}{3}$ $y=\frac{5300}{3}$ $y=\frac{41766.67}{3}$