Exercises, pp. 346-347

1. Possible answer: Q, R, S

2. Possible answer: QS, RT

Possible answer: plane QRS

4. Possible answer: \overrightarrow{UQ} , \overrightarrow{UT} , \overrightarrow{US}

5. Possible answer: QU, RU, SU

♠ BĀ and BC, ĀĒ and CĒ, ĀD and CD

8. Possible answer: DE, EF

7. D, E, F

9. Possible answer: plane DEF

10. Possible answer: DE, FD, EF

11. Possible answer: DE, EF, DF

12. AF and BC, AE and BD, AB and ED, FE and CD

13. Plane ABC contains points A, B, and C; lines AB and BC; line segments \overrightarrow{AB} , \overrightarrow{AC} , and \overrightarrow{BC} ; and rays \overrightarrow{AB} , \overrightarrow{BA} , \overrightarrow{BC} , \overrightarrow{CB} , and CA. Plane ACD contains points A, C, and D; line segments \overline{AC} , \overline{AD} , and \overline{CD} ; and ray \overline{CA} .

> Course 2 Holt Middle School Math

CHAPTER 7 ANSWERS

115

Exercises, pp. 346-347 (continued)

Possible answer: Plane ABC; points A, B, C, D, E; lines \overrightarrow{AB} , \overrightarrow{CD} ; and rays \overrightarrow{AB} , \overrightarrow{BA} , CD. DC

- 18. A line is a straight path that extends forever in two directions: a ray is a straight path that extends forever in one direction from an endpoint; and a segment is a straight path from one endpoint to another. It is possible to estimate the length of a segment, because it does not extend forever in any direction.
- 19. Yes; because a plane extends forever, it is possible that two faces could be on the same plane and still not touch.
- 22.

21. ₁₀₀

24. 3.6

23. $\frac{31}{50}$ **25.** 4.5

26. 0.04

27. C

CHAPTER 7 ANSWERS

Exercises, pp. 346-347 (continued)

c. Possible answer: $\overline{AC} \cong \overline{EF}$, $\overline{CD} \cong \overline{CF}$, $\overline{BC} \cong \overline{FH}$, $\overline{HI} \cong \overline{JK}$, EF ≅ GH

16. No; two points cannot be shared by two different line segments. If two line segments share two points in common, then the lines are the same.

Copyright © by Holl, Revenuert and Wirel

116

Holf Middle School Math Course 2

CHAPTER 7 ANSWERS

Exercises, pp. 350-351

1. 60°

2. 30°

3. 120°

- 4. 180°
- 5. Right angle
- 6. Acute angle
- 7. Straight angle
- 8. ∠MNL and ∠ONP, ∠ONP and ∠PNQ
- Possible answers: ∠PNQ and ∠MNP, ∠LNM and ∠MNP
- 10. 80°

11. 70°

12. 130°

- 13. 120°
- 14. Obtuse angle
- 15. Right angle
- 16. Acute angle
- 17. ∠BAC and ∠GAF; ∠EAF and ∠GAF
- 18. Possible answer: ∠BAC and ∠CAE; ∠GAF and ∠GAC
- 19. Supplementary; 152°
- 20. Complementary; 24°
- 21. Supplementary; 46°
- 22. Straight; right; obtuse
- 23. a. Right angles
 - **b.** About 39°N, 77°W
- 24. Complementary angles do not have to be adjacent.
- 25. Complementary angles are two angles whose sum is 90°. Supplementary angles are two angles whose sum is 180°.

118

Exercises, pp. 350-351 (continued)

26. 65°

27. 70%

28. 9%

29. 145%

30, 23,4%

31. 57.1%

32. 133.3%

33. 46.7%

34. B

Copyright © by Holt, Planehart and Winston All rights reserved.

Holt Middle School Math Course 2

CHAPTER 7 ANSWERS

Exercises, pp. 376-377 (continued)

28. 200

29. 384

119

30. 60

31. 0.56

32. a = 4

33. h = 6

34. k = 8

35. m = 10

36. D

CHAPTER 7 ANSWERS

Exercises, pp. 376–377

1. Isosceles right

2. Scalene obtuse

3. Isosceles acute

4. 2 isosceles right; 1 isosceles acute; 2 scalene obtuse

5. Scalene right

6. Isosceles obtuse

7. Equilateral acute

8. 1 isosceles right; 1 isosceles acute; 2 scalene right

9. Isosceles

10. Scalene

11. Equilateral

12. Scalene

13. Equilateral

14. Isosceles

15. Acute

16. Obtuse

17. Right

18. Obtuse 20. Acute

19. Right 21. 8 in., isosceles

22. 2 isosceles right triangles

23. Scalene triangle

24. Isosceles triangle

25. D

26. No; the angles in an equilateral triangle are all acute, and a triangle must have one obtuse angle to be classified as an obtuse triangle.

27. $\triangle ABC$ is equilateral; $\triangle BCD$ is isosceles; $\triangle BDE$ is scalene.

Copyright & by Holf, Rinehart and Winston Af rights reserved.

126

Holt Middle School Math Course 2

CHAPTER 7 ANSWERS

Exercises, pp. 380-381

1. Parallelogram

2. Parallelogram, rectangle

3. Parallelogram, rhombus

4. False; a rhombus may have four right angles or not; if it does not, it is not a square.

5. True; opposite sides are parallel in a rectangle.

6. Kite

7. Parallelogram

8. Trapezoid

9. Parallelogram; rhombus

10. Parallelogram; rhombus; rectangle; square

11. Parallelogram; rectangle

12. True; squares have four right angles.

13. False; some rectangles do not have all sides equal.

14. True; those with four equal sides are squares.

15. False; a square has two sets of parallel sides, but a trapezoid has only one set.

16. Square, rectangle

17. Parallelogram, rectangle, rhombus, square

18. Rhombus, square

19. Parallelogram, rectangle, rhombus, square

20. Trapezoid

Copyright & by Holt, Pinehart and Winston

21. 1 triangle, 1 pentagon, and 2 trapezoids

Exercises, pp. 380-381 (continued)

- 2. Draw lines parallel to the 4 cm and 10 cm sides. Their point of intersection is the remaining vertex.
- 3. Parallelogram, rhombus, square, rectangle, trapezoid, right
- 14. Possible answer: How many squares are in the design?

- 25. The opposite sides of a kite are not parallel, but opposite sides of a parallelogram are parallel. Also, two pairs of adjacent sides of a kite are congruent, while opposite sides of a parallelogram are congruent.
- **26.** Rhombus; \overline{BC} and \overline{CF} are congruent. Since the diagonals of BCFD bisect each other, it must be a parallelogram and $\overline{BD} \cong \overline{CF}$ and $\overline{DF} \cong \overline{BC}$.
- 27. 16

28. 4

29. 5

30. 1

31. -3

- **33.** -5
- 35. A

Copyright © by Host, Penehart and W As rights reserved.

- 32. -11

129

- 34. 2

Holt Middle School Math Course 2

CHAPTER TANSWERS

7-10 Exercises, pp. 394-395

1. Reflection

3.

2. Translation

6. Reflection

7. Rotation

Copyright © by Hoft. Rinehart and Winston All rights reserved.

Holt Middle School Math Course 2 133

CHAPTER 7 ANSWERS

Exercises, pp. 394-395 (continued)

- 11. Rotation is shown, but not translation or reflection.
- 12. a. Possible answer: The two people are the same shape and size, but they are holding different objects, and their skirts are slightly different.
 - b. A glide reflection can be seen on the cornstalk where the leaves on one side are reflected and translated to the other side of the stalk.
- 13. Possible answer: The stick figures are a reflection of each other, but they are also a 180° rotation of each other. One is also a translated image of the other.
- 14. 1, 8

- 15. No mode
- 16. x = 4

- 17. y = 24
- 18. m = 34
- 19. A

7-11) Exercises, pp. 398-399

- 5. None
- **7.** 6 times
- 9. 3 times
- **13.** None

- 8. 2 times

135

16. 3 times

Copyright C by Helt. Plinehert and All rights reserved.

Helt Middle School Math Course 2

CHAPTER 7 ANSWERS

7-111 Exercises, pp. 398-399 (continued)

- 17. 8 times
- 18. 4 times
- 19. Possible answer:

- 20. Regular nonagon
- 21. 1 line
- 22. Yes, because the design was cut along a vertical line; yes, because the same design was cut into both halves
- 23. a. 4 times
 - b. None
- 24. Possible answer: What is the smallest angle of rotational symmetry for the square?
- 25. In order to have rotational symmetry, a figure must match itself at least once before rotating completely around; otherwise, all figures would have rotational symmetry.
- 26. Possible answers: BED and MOM
- **27.** $\frac{3}{4}$

29. 1

- **31.** x = 18
- **32.** $y = 1\frac{1}{8}$
- **33.** $m = \frac{1}{9}$
- 34. D

Copyright & by Hell A