\qquad
NO calculators are needed for this.

Review:

Think about $(4 x)^{3}$
You could write $(4 x) \cdot(4 x) \cdot(4 x)$
But that is the same thing as $4 \cdot x \bullet 4 \cdot x \cdot 4 \cdot x$
But THAT is the same thing as $4 \bullet 4 \cdot 4 \cdot x \cdot x \cdot x$
And we know THAT is the same thing as $4^{3} \cdot x^{3}$
So $(4 x)^{3}=4^{3} \cdot x^{3}$

1. What does $(2 h)^{6}$ simplify to? \qquad
2. What does $(m p)^{5}$ simplify to? \qquad
3. What does $(7 w p)^{3}$ simplify to? \qquad
Remember what you wrote in the 8.1 closer?

You have the knowledge to fill in the following 3 properties now:

$$
(a b)^{n}=
$$

\qquad

New (6):
What does your gut instinct tell you about $\left(\frac{a}{b}\right)^{n}=$ \qquad

Let's investigate it on the next page!

$$
\text { Think about }\left(\frac{3}{4}\right)^{6}
$$

You could write $\left(\frac{3}{4}\right) \cdot\left(\frac{3}{4}\right) \cdot\left(\frac{3}{4}\right) \cdot\left(\frac{3}{4}\right) \cdot\left(\frac{3}{4}\right) \cdot\left(\frac{3}{4}\right)$
But that is the same thing as $\frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4}$
And we know THAT is the same thing as $\frac{3^{6}}{4^{6}}$
So $\left(\frac{3}{4}\right)^{6}=\frac{3^{6}}{4^{6}}$
4. What does $\left(\frac{2}{5}\right)^{4}$ simplify to?

Work it out if you need to!!! Sometimes working it out the long way helps you see the faster way!
5. What does $\left(\frac{x}{3}\right)^{7}$ simplify to?
6. (Careful) What does $\left(\frac{-2}{y}\right)^{6}$ simplify to? \qquad but $y \neq$ \qquad
7. What does $\left(\frac{a}{b}\right)^{n}$ simplify to? \qquad but $b \neq$ \qquad

New (7):

I can cancel something that looks like $\left(\frac{3}{3}\right)$ since it is just equal to 1 .
In this particular problem: $\frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}$ how many sets of $\left(\frac{3}{3}\right)$ cancel?

Yep, you're right $=$) $\frac{3 \cdot 3 \cdot \mid 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3|\cdot 3| \cdot 3 \cdot 3}$

The final answer would be $\frac{1}{3 \cdot 3}$ or $\frac{1}{3^{2}}$ or that's just $\frac{1}{9}$
So $\frac{3^{5}}{3^{7}}=\frac{1}{3^{2}}$

ANOTHER WAY TO LOOK AT IT....

Who has more 3's? The numerator or the denominator?

$$
\frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}
$$

The denominator wins by TWO 3's (Kind of like tug of war to me!)

$$
\frac{1}{3 \cdot 3}
$$

So $\frac{3^{5}}{3^{7}}=\frac{1}{3^{2}}$

IMPORTANT: We need to figure out how to simplify the following: $\frac{a^{m}}{a^{n}}$
Try some of these on the back and see what you can figure out
8. What does $\frac{5^{9}}{5^{4}}$ simplify to? \qquad
9. What does $\frac{b^{2}}{b^{9}}$ simplify to? \qquad but $b \neq$ \qquad
10. What does $\frac{x^{44}}{x^{41}}$ simplify to? \qquad but $x \neq$ \qquad
11. (Careful) What does $\frac{(-4)^{3}}{(-4)^{10}}$ simplify to?

Do you know all of the properties?

$$
\begin{aligned}
& a^{m} \cdot a^{n}= \\
& \left(a^{m}\right)^{n}= \\
& (a b)^{n}=
\end{aligned}
$$

$a^{0}=$ \qquad provided that $a \neq$ \qquad
$a^{-n}=$ \qquad provided that $a \neq$ \qquad

$$
\begin{aligned}
& \left(\frac{a}{b}\right)^{n}= \\
& \frac{a^{m}}{a^{n}}=
\end{aligned}
$$ provided that $b \neq$ \qquad provided that $a \neq$ \qquad

