8.4 Exploration

Name:

NO calculators are needed for this.

Review:

Think about $(4x)^3$ You could write $(4x) \cdot (4x) \cdot (4x)$ But that is the same thing as $4 \cdot x \cdot 4 \cdot x \cdot 4 \cdot x$ But THAT is the same thing as $4 \cdot 4 \cdot 4 \cdot x \cdot x \cdot x$ And we know THAT is the same thing as $4^3 \cdot x^3$ So $(4x)^3 = 4^3 \cdot x^3$

1. What does $(2h)^6$ simplify to? _____

2. What does $(mp)^5$ simplify to? _____

3. What does $(7wp)^3$ simplify to?

Remember what you wrote in the 8.1 closer?

You have the knowledge to fill in the following 3 properties now:

 $(ab)^n =$

New (6):

What does your *gut* instinct tell you about $\left(\frac{a}{b}\right)^n =$ _____

Let's investigate it on the next page!

Think about
$$\left(\frac{3}{4}\right)^6$$

You could write $\left(\frac{3}{4}\right) \cdot \left(\frac{3}{4}\right) \cdot \left(\frac{3}{4}\right) \cdot \left(\frac{3}{4}\right) \cdot \left(\frac{3}{4}\right) \cdot \left(\frac{3}{4}\right)$
But that is the same thing as $\frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4}$
And we know THAT is the same thing as $\frac{3^6}{4^6}$
So $\left(\frac{3}{4}\right)^6 = \frac{3^6}{4^6}$

4. What does $\left(\frac{2}{5}\right)^4$ simplify to? _____

Work it out if you need to!!! Sometimes working it out the long way helps you see the faster way!

5. What does $\left(\frac{x}{3}\right)^7$ simplify to? _____

6. (Careful) What does
$$\left(\frac{-2}{y}\right)^6$$
 simplify to? _____ but $y \neq$ _____

7. What does
$$\left(\frac{a}{b}\right)^n$$
 simplify to? _____ but $b \neq$ _____

New (7):

I can cancel something that looks like $\left(\frac{3}{3}\right)$ since it is just equal to 1. In this particular problem: $\frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}$ how many sets of $\left(\frac{3}{3}\right)$ cancel? Yep, you're right =) $\frac{\cancel{9} \cdot \cancel{3} \cdot \cancel{3} \cdot \cancel{3} \cdot \cancel{3} \cdot \cancel{3} \cdot 3}{\cancel{3} \cdot \cancel{3} \cdot$

ANOTHER WAY TO LOOK AT IT....

Who has more 3's? The numerator or the denominator? $\frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}$ The denominator wins by TWO 3's *(Kind of like tug of war to me!)* $\frac{1}{3 \cdot 3}$ So $\frac{3^5}{3^7} = \frac{1}{3^2}$

<u>IMPORTANT</u>: We need to figure out how to simplify the following: $\frac{a^m}{a^n}$

Try some of these on the back and see what you can figure out

8. What does
$$\frac{5^9}{5^4}$$
 simplify to? _____

9. What does
$$\frac{b^2}{b^9}$$
 simplify to? _____ but $b \neq$ _____

10. What does
$$\frac{x^{44}}{x^{41}}$$
 simplify to? _____ but $x \neq$ _____

11. (Careful) What does
$$\frac{(-4)^3}{(-4)^{10}}$$
 simplify to? _____

