Semester 2 Final Exam Review

Name \qquad Period \qquad
NOTE: ANY TALKING OR SUSPICIOUS COMMUNICATION DURING OR AFTER THE INCLASS FINAL EXAM TEST WILL RESULT IN AN AUTOMATIC GRADE OF 0\%.

Multiple Choice. In the blank to the left of the statement or question, write the upper-case letter corresponding to the answer that best completes or answers the statement or question.
_1. What is the simplified form of $\frac{\sqrt[3]{270 x^{20}}}{\sqrt[3]{5 x}}$?
(A) $2 x \sqrt[3]{3 x^{6}}$
(B) $3 x \sqrt[63]{2 x}$
(C) $\sqrt[3]{135 x^{19}}$
(D) $3 x \sqrt[3]{135 x}$
2. $\log \left(\frac{x^{3} y^{2}}{3}\right)=$ \qquad .
(A) $3 \log x+2 \log y+\log 3$
(C) $(3 \log x)(2 \log y)-\log 3$
(B) $3 \log x-2 \log y-\log 3$
(D) $3 \log x+2 \log y-\log 3$
\qquad 3. If $\log _{2} x=3, x=$ \qquad .
(A) $\frac{3}{\log _{2} 3}$
(B) 2(3)
(C) 2^{3}
(D) 3^{2}
4. Solve for $x: 5 x=\sqrt{10+15 x}$.
(A) $x=-1$
(B) $x=-\frac{2}{5}$
(C) $x=1$ or $x=-\frac{2}{5}$
(D) $x=1$
5. Solve for x : $\sqrt{10+2 x}=5+x$.
(A) $x=3,5$
(B) $x=-1,3$
(C) $x=1,-3$
(D) $x=-3,-5$
6. If $\left(\frac{1}{2}\right)^{x}=17, x \approx$ \qquad .
(A) -8.500
(B) -4.087
(C) -0.245
(D) 4.087
7. $4 \log _{5}(4 x+1)+5 \log _{5}(2 x+6)=$ \qquad .
(A) $\log _{5}\left((4 x+1)^{4}+(2 x+6)^{5}\right)$
(C) $20 \log _{5}[(4 x+1)(2 x+6)]$
(B) $\log _{5} \frac{(4 x+1)^{4}}{(2 x+6)^{5}}$
(D) $\log _{5}\left[(4 x+1)^{4}(2 x+6)^{5}\right]$
8. What is the simplified form of $\sqrt[5]{-32 x^{15}}$?
(A) $2 x^{3}$
(B) $-2 x^{3}$
(C) $-2 x^{10}$
(D) $2 x^{10}$
9. Dr. Hartman puts $\$ 5000$ into an account with interest that is compounded continuously. If the annual rate of interest is 3%, how much money will be in Dr. Hartman's account after 6 years?
(A) $\$ 5090.81$
(B) $\$ 5986.09$
(C) $\$ 30,913.64$
(D) $\$ 244,645.36$
10. What is the solution of the equation $3 \sqrt[3]{x+4}=12$?
(A) 12
(B) 40
(C) 60
(D) 85
11. What is the solution of the equation $(2 x+15)^{1 / 2}-2=3$?
(A) 0
(B) 5
(C) -5
(D) 10
\qquad 12. What is the range of $y=5(3)^{x-2}-1$?
(A) $y>2$
(B) $y>-2$
(C) $y>1$
(D) $y>-1$
(E) All real numbers
\qquad 13. What is the domain of $y=5(3)^{x-2}-1$?
(A) $x>2$
(B) $x>-2$
(C) $x>1$
(D) $x>-1$
(E) All real numbers
\qquad 14. What is the range of $y=\log (x-2)-1$?
(A) $y>2$
(B) $y>-2$
(C) $y>1$
(D) $y>-1$
(E) All real numbers
\qquad 15. What is the domain of $y=\log (x-2)-1$?
(A) $x>2$
(B) $x>-2$
(C) $x>1$
(D) $x>-1$
(E) All real numbers
\qquad 16. Which of the following is equivalent to $\log _{a} b=c$?
(A) $a^{b}=c$
(B) $b^{a}=c$
(C) $b^{c}=a$
(D) $a^{c}=b$
\qquad 17. What is the inverse of the function $y=\ln (x+3)$?
(A) $y=3^{x}-e$
(B) $y=x^{3}-e$
(C) $y=e^{x}-3$
(D) $y=e^{3}-x$
18. What is the condensed expression for $3 \log x-\log 2$?
(A) $\log \frac{x^{3}}{2}$
(B) $\log 2 x^{3}$
(C) $\log 2 x^{-3}$
(D) $\log \frac{x^{-3}}{2}$
\qquad 19. What is the solution of $3^{x}=45$?
(A) 3.382
(B) 3.417
(C) 3.438
(D) 3.465
20. What is the solution of $\log _{7}(4 x+5)=2$?
(A) 2
(B) 6
(C) 9
(D) 11
21. What are the asymptotes of the graph of $y=\frac{2}{x+18}-7$?
(A) $x=18, y=2$
(C) $x=-18, y=7$
(B) $x=-18, y=-7$
(D) $x=2, y=-18$
22. Simplify the following expression: $\frac{x+3}{x-5}-\frac{x}{x+1}$.
(A) $\frac{3}{2 x-6}$
(B) $\frac{9 x+3}{(x+1)(x-5)}$
(C) $\frac{3-x}{(x+1)(x-5)}$
(D) $\frac{3}{(x+1)(x-5)}$
23. What are all the solutions of the equation $\frac{-6}{x+7}=\frac{x}{2}$?
(A) $-3,4$
(B) -4
(C) -3
(D) $-3,-4$
24. What is the product of $\frac{x^{2}-7 x-44}{x^{2}+6 x-16} \cdot \frac{x^{2}+17 x+72}{x^{2}-2 x-99}$?
(A) $\frac{x+9}{x-2}$
(B) $\frac{x-2}{x+4}$
(C) $\frac{x+4}{x-2}$
(D) $\frac{x-11}{x+9}$
25. Simplify the following expression: $\left(27 a^{-9}\right)^{-\frac{4}{3}}$.
(A) $\frac{1}{81 a^{12}}$
(B) $\frac{a^{12}}{81}$
(C) $\frac{81}{a^{12}}$
(D) $81 a^{12}$
26. Simplify the following expression: $\sqrt{2}+6 \sqrt{128}+3 \sqrt{8}$.
(A) $9 \sqrt{2}$
(B) $55 \sqrt{2}$
(C) $55 \sqrt{138}$
(D) $9 \sqrt{138}$
27. Simplify the following expression: $(3+\sqrt{5})(7+\sqrt{5})$
(A) $26+10 \sqrt{5}$
(B) 26
(C) $21+10 \sqrt{5}$
(D) $26+\sqrt{5}$

In problems 28-30, perform the indicated operation. Let $f(x)=x+1$ and $g(x)=x-1$.
\qquad 28. $f(x)+g(x)$
(A) $2 x$
(B) $x^{2}-1$
(C) $2 x-2$
(D) $2 x^{2}-1$
29. $f(x) \cdot g(x)$
(A) $2 x^{2}-1$
(B) $2 x^{2}$
(C) $2 x^{2}+1$
(D) $x^{2}-1$
30. $f(g(x))$
(A) x
(B) $x^{2}-1$
(C) $x-1$
(D) $2 x$
31. What is the solution of $2(x+3)^{1 / 3}-5=1$?
(A) $\frac{1}{24}$
(B) -24
(C) 24
(D) no solution
\qquad 32. Simplify the following expression: $\frac{x^{2}+12 x+35}{x^{2}+9 x+20} \div \frac{x^{2}-49}{x^{2}+7 x+12}$.
(A) $\frac{x+3}{x-7}$
(B) $\frac{x-7}{x+3}$
(C) $\frac{(x+7)^{2}(x-7)}{(x+4)^{2}(x+3)}$
(D) $\frac{(x+4)^{2}(x+3)}{(x+7)^{2}(x-7)}$
\qquad 33. What is the asymptote of the graph of $f(x)=2^{x}$?
(A) x-axis
(B) y-axis
(C) $y=1$
(D) $y=-1$
\qquad 34. Which of the following is equivalent to $\log _{b} \frac{x}{y}$?
(A) $\log _{b} x \div \log _{b} y$
(B) $\log _{b} x-\log _{b} y$
(C) $\log _{b}(x-y)^{1 / 2}$
(D) $\log _{b} x+\log _{b} y$
35. The variable x varies inversely with y. When $x=-3$ and $y=-2$, which equation relates x and y ?
(A) $\frac{x}{y}=\frac{-3}{-2}$
(B) $x y=6$
(C) $\frac{x}{y}=\frac{3}{2}$
(D) $x=6 y$
36. The variable z varies jointly with x and y. When $x=5$ and $y=2, z=10$. Which equation relates x, y, and z ?
(A) $z=x y$
(B) $z=\frac{1}{10} x y$
(C) $z=\frac{x}{y}$
(D) $z=10 x y$
\qquad 37. What are the solutions of the equation $x=\frac{2}{x-1}$?
(A) $-2,1$
(B) 2, 1
(C) $-1,2$
(D) $-1,-2$
\qquad 38. What is the sum of $\frac{x+1}{x}+\frac{x}{2}$?
(A) $\frac{x(x+1)}{2 x}$
(B) $\frac{x^{2}+2 x+2}{x+2}$
(C) $\frac{x^{2}+x+2}{x+2}$
(D) $\frac{x^{2}+2 x+2}{2 x}$
39. What is the simplified form of the complex fraction $\frac{\frac{1}{x}}{\frac{x}{x^{2}+1}}$?
(A) $\frac{x^{2}+1}{x^{2}}$
(B) $\frac{1}{x^{2}}$
(C) 2
(D) $\frac{x^{2}+1}{2 x}$
\qquad 40. Which function is the inverse of $f(x)=-\frac{1}{5} x+8$?
(A) $f^{-1}(x)=-\frac{1}{5} x-8$
(C) $f^{-1}(x)=5 x+40$
(B) $f^{-1}(x)=-5 x+40$
(D) $f^{-1}(x)=-5 x-40$
\qquad 41. Which function is the inverse of $f(x)=\frac{1}{4} x^{3}+1$?
(A) $f^{-1}(x)=\sqrt[3]{x-1}$
(C) $f^{-1}(x)=\sqrt[3]{4 x-1}$
(B) $f^{-1}(x)=\sqrt[3]{4 x-4}$
(D) $f^{-1}(x)=\sqrt[3]{4 x+4}$
42. Which is the domain and range of $y=5 \sqrt[8]{x-1}+3$?
(A) $x \geq 1, y \geq 3$
(C) $x \geq-1, y \leq-3$
(B) $x \geq 1, y \leq 3$
(D) $x \leq 1, y \geq 3$
43. What is the simplified form of $\sqrt[5]{\frac{x^{5}}{y^{15}}}$?
(A) $\frac{x}{y^{3}}$
(B) $\frac{x^{5}}{y^{15}}$
(C) $\frac{x}{y^{15}}$
(D) $\sqrt[5]{\frac{x}{y^{3}}}$

For questions $44-46$, refer to the following box-and-whisker plot.

44. What is Q1?
(A) 5
(B) 10
(C) 15
(D) 30
45. What is the interquartile range?
(A) 5
(B) 10
(C) 15
(D) 30
46. What is the range?
(A) 5
(B) 10
(C) 15
(D) 30
47. What kind of distribution is indicated below?

(A) Normal
(B) Negatively skewed
(C) Positively skewed
(D) Not skewed
48. $\log _{b} y-\log _{b} b=$ \qquad .
(A) $\log _{b} \frac{b}{y}$
(B) $\log _{b}(y-b)$
(C) $\log _{b} \frac{y}{b}$
(D) $\log _{2 b} \frac{y}{b}$
\qquad 49. $\log _{n} \sqrt[6]{\frac{4 x^{9}}{z^{8}}}=$ \qquad .
(A) $\log _{n} 4+9 \log _{n} x-8 \log _{n} z$
(C) $\frac{1}{6} \log _{n} 4+\frac{3}{2} \log _{n} x+\frac{4}{3} \log _{n} z$
(B) $\frac{1}{6} \log _{n} 4-\frac{3}{2} \log _{n} x-\frac{4}{3} \log _{n} z$
(D) $\frac{1}{6} \log _{n} 4+\frac{3}{2} \log _{n} x-\frac{4}{3} \log _{n} z$
50. $4 \log _{m} x-7 \log _{m} q^{2}=$ \qquad
(A) $\log _{m} \frac{x^{4}}{2 q^{7}}$
(B) $\log _{m} \frac{4 x}{7 q^{2}}$
(C) $\log _{m} \frac{x^{4}}{q^{9}}$
(D) $\log _{m} \frac{x^{4}}{q^{14}}$
51. Which function is graphed at right?
(A) $y=\frac{1}{2}\left(2^{x-1}\right)+5$
(B) $y=-\frac{1}{2}\left(2^{x-1}\right)+5$
(C) $y=\frac{1}{2}\left(2^{x-5}\right)+2$
(D) $y=-\frac{1}{2}\left(2^{x-5}\right)+2$

52. Which function is graphed at right?
(A) $y=3\left(\frac{2}{3}\right)^{x+1}+2$
(B) $y=-3\left(\frac{2}{3}\right)^{x+1}+2$
(C) $y=3\left(\frac{2}{3}\right)^{x-2}-1$
(D) $y=-3\left(\frac{2}{3}\right)^{x-2}-1$

53. Ms. Buckner buys a car for $\$ 25000$. The value A of the car depreciates (decreases) by 15% each year. If t represents the number of years, which function models the scenario?
(A) $A=25000(1.15)^{t}$
(B) $A=25000(0.85)^{t}$
(C) $A=25000 t^{1.15}$
(D) $A=25000 t^{0.85}$
54. Mr. Geist buys a painting for $\$ 300000$. The value A of the painting increases by 20% each year. If t represents the number of years, which function models the scenario?
(A) $A=300000(1.2)^{t}$
(B) $A=300000(0.8)^{t}$
(C) $A=300000 t^{1.2}$
(D) $A=300000 t^{0.8}$
\qquad 55. Mrs. Bushhousen puts $\$ 1000$ into an account that pays an annual rate of interest of 8% and is compounded continuously. How many years will it take for Mrs. Bushhousen's investment to triple?
(A) 12
(B) 13
(C) 14
(D) 15
\qquad 56. Which of the following models does not represent inverse variation?
(A) $x y=5$
(B) $x=2 y$
(C) $x=\frac{2}{y}$
(D) $y=\frac{2}{x}$
57. Solve the following equation: $\frac{5}{x+1}+\frac{x}{x^{2}-1}=\frac{1}{x-1}$
(A) 1
(B) 0
(C) $\frac{5}{6}$
(D) $y=\frac{6}{5}$
\qquad 58. A set of grades has a mean of 75 with a standard deviation of 2.5. The grades are normally distributed. What grade is 2 standards deviations above the mean?
(A) 70
(B) 72.5
(C) 77.5
(D) 80
59. What are the domain and range of the graph shown at right?
(A) Domain: All real numbers Range: All real numbers
(B) Domain: $x \leq 0$ Range: $y \geq 0$
(C) Domain: $x \leq 0$ Range: $y \leq 0$
(D) Domain: $x \geq 0$ Range: $y \leq 0$

60. Which function is graphed at right?
(A) $y=\log _{10}(x+2)$
(B) $y=\log _{10}(x-2)$
(C) $y=\log _{10} x+2$
(D) $y=\log _{10} x-2$
61. Which function is graphed at right?
(A) $y=\frac{2}{x+2}-1$
(B) $y=\frac{2}{x+1}+2$
(C) $y=\frac{2}{x-2}+1$
(D) $y=\frac{2}{x-1}-2$
62. Which graphed represents $y=\frac{1}{2} \sqrt[3]{x-2}+1$?
A)

C)

B)

D)

\qquad 63. Simplify the following expression: $\frac{2 x^{2}-3 x-2}{3 x^{2}-x-10}$.
(A) $\frac{2 x+1}{3 x-5}$
(B) $\frac{2 x-1}{3 x-5}$
(C) $\frac{2 x-1}{3 x+5}$
(D) $\frac{2 x+1}{3 x+5}$
64. Solve the following equation: $4 \log _{4} x+\log _{4} 81=2$.
(A) $\frac{2}{3}$
(B) $\pm \frac{2}{3}$
(C) 5
(D) ± 5
65. Simplify completely: $\sqrt[4]{10 x^{5}} \cdot \sqrt[4]{3240 x^{4}}$
(A) $78 x^{8} \sqrt[4]{25 x}$
(B) $3 x^{4 \sqrt[4]{400 x^{5}}}$
(C) $6 x \sqrt[4]{25 x}$
(D) $30 x^{2} \sqrt[4]{x}$

