\qquad
method: $x^{2}+4 x=-20$ "bx" term: Factor-

$$
\frac{+20+20}{x^{2}+4 x+20}=0
$$

Complete the Square
\qquad
.
\qquad
6. Write the following expression as a complex number in standard form: $(7-2 i)+\overline{(3}+3 i)$
$4+i$
6. \qquad
\qquad
7. Write the following expression as a complex
7. $16+11 i$ number in standard form: $(3-2 i)(2+5 i)$

$$
\begin{aligned}
& 6+15 i-4 i-10 i^{2} \\
& 6+11 i-10(-1) \\
& 6+\underbrace{6+10}_{16+11 i}
\end{aligned}
$$

\qquad
8. Factor the following expression completely:
8. $2(5 x+1)(2 x-1)$

Factor:
(1) GCF
(2) Look fo-perfect squares
(3) "The FACE" ()) ... reverse Foil
(4) \checkmark by foiling
9. $(4 x+9)(4 x-9)$
\qquad

Factor the following expression co
$16 x^{2}-81$ perfect Squares
$(4 x+9)(4 x-9)$
10. Factor the following expression completely:
10. $(7 u+3)(u-1)$ $7 u^{2}-4 u-3$

$$
\underbrace{(-4 u)}_{\left(\begin{array}{c}
7 u+3)(u-1 \\
+3 u \\
-7 u
\end{array}\right)}
$$

11. A model for Kloefkorn Construction's revenue is $R=-15 p^{2}+300 p+12000$, where p is the price in dollars of the company's product. What price will maximize the revenue? What will be the maximum revenue?

$$
\begin{gathered}
x=\frac{-300}{2(-15)}=\frac{+300}{+30}=\frac{30}{3}=10 \\
R=\begin{array}{c}
-15(10)^{2}+300(10)+12000 \\
\frac{-1500+3000+12000}{1500+12000} \\
13500
\end{array}
\end{gathered}
$$

12. The equation for the motion of a projectile fired straight up at an initial velocity of $64 \mathrm{ft} / \mathrm{sec}$ is $h=-16 t^{2}+64 t$, where h is the height in feet and t is the time in seconds. Find the time the projectile needs to reach its highest point. How high will it go?

$$
\begin{aligned}
x & =\frac{-b}{2 a}=\frac{+6432}{2(+16)}=\frac{32}{16}=(2) \\
h(2) & =-16(2)^{2}+64(2) \\
& =-16(4)+128 \\
& =-64+128 \\
& =64
\end{aligned}
$$

12. Time: 2 seconds

Height: \qquad

13. Year: \qquad poultry per capita is modeled by
$y=-0.2125 t^{2}+2.615 t+56.33$, where $t=0$
corresponds to 1990. During what year was the consumption of poultry per capita at about 61 per capita?
$\begin{aligned} 61=-2125 t^{2}+2.615 t & +56.33 \\ -61 & -61\end{aligned}$

Solve for t.
-- Use Quad. Formula -- Use Calk. to Find "Zeros".
$t=\underset{j}{2.167} \quad t=10.14$
≈ 2 yrs. after- $1990 \approx 10$ yrs. after- 1990
so 1992

Find the vertex of the quadratic function and explain how you found it. Identify the axis of symmetry. Identify the y-intercept. Then graph the quadratic function.
14. $y=4 x^{2}+8 x-45$

$$
x=\frac{-8}{2(4)}=\frac{-8}{8}=-1
$$

How did you figure out the vertex?
$x=\frac{-b}{2 a}$. This is the x-coordinate
of the Vertex. Then, substitute
the " x " into the equation to find the
Axis of symmetry: \qquad
y-intercept: $\frac{(0,-45}{T} \frac{(0)}{} 0$ in for x.

x	y
-3	-33
-2	-45
-1	-49
0	-45
1	-33
	page 3-R-AA - U1C5-6

Graph: $\quad X=-1$

15. List all possible rational zeros of the function $f(x)=\frac{5 x^{3}}{q}+2 x^{2}+16 x+9$. Do not find the zeros.
15. $X= \pm 1, \pm 3, \pm 9, \pm \frac{1}{5}, \pm \frac{3}{5}, \pm \frac{9}{5}$

$$
\frac{p}{9}=\frac{ \pm 1, \pm 3 \pm 9}{ \pm 1, \pm 5}
$$

3 TOTAL ZEROS
16. Solve the following equation, giving exact
16. $X=2, \pm \sqrt{10}$ answers: $x^{3}-2 x^{2}-10 x+20=0$. Check: $\pm \geq \pm 2, \pm 4$,
$2 \left\lvert\, \begin{array}{cccc}1 & -2 & -10 & 20 \\ \downarrow & 2 & 0 & -20 \\ x^{2} & 0_{x} & -10 & 0\end{array}\right.$
17. Solve the following equation, giving exact
17. $x= \pm \sqrt{2}, \pm i \sqrt{5}$ answers: $x^{4}+3 x^{2}=10$.

$$
\begin{aligned}
& x^{4}+3 x^{2}-10=0 \\
& \left(x^{2}-2\right)\left(x^{2}+5\right)=0 \\
& \begin{aligned}
x^{2}-2=0 & x^{2}+5=0 \\
\sqrt{x^{2}}=\sqrt{2} & \sqrt{x^{2}}=\sqrt{-5}
\end{aligned} \\
& x= \pm \sqrt{2} \quad x= \pm i \sqrt{5}
\end{aligned}
$$

18. Write a polynomial function in standard form that has zeros of $4,-2$, and 0 . Classify the polynomial by number of terms and degree.

$$
\begin{aligned}
& x(x-4)(x+2) \\
& x\left(x^{2}+2 x-4 x-8\right) \\
& x\left(x^{2}-2 x-8\right) \\
& x^{3}-2 x^{2}-8 x
\end{aligned}
$$

18. Standard form:

Name by degree: \qquad Cubic

Name by number of terms: Trinomial
19. Describe the end behavior of the function
$f(x)=\left(-2 x^{3}\right)+5 x^{2}+9 x-10$ by filling in the blanks. ODD Negative
Also, use your graphing calculator to find the relative maximums) and minimum (s).

Adjust your window..

19. $\lim _{x \rightarrow-\infty} \mathrm{f}(\mathrm{x})=\infty \quad \cup p$

$$
\left.\operatorname{limf}_{x \rightarrow+\infty} \mathrm{x}\right)=-\infty \text { Down }
$$

Relative maximum (s) $(2.31,12.82)$
Relative minimum (s) $(-0.65,-13.19)$
0. $o x^{2}$
20. Divide $\left(x^{4}+2 x^{3}-3 x-1\right) \div(x+4)$ by synthetic division.

21. Divide $\left(5 x^{4}+14 x^{3}+9 x\right) \div\left(x^{2}+3 x+1\right)$.

$$
\begin{aligned}
& \text { by long division. } 5 x^{2}-x-2 \\
& x^{2}+3 x+1 \begin{array}{|}
\hline 5 x^{4}+14 x^{3}+0 x^{2}+9 x+0 \\
+\left(5 x^{4}+15 x^{3}+5 x^{2}\right) \\
-\left(1 x^{3}-5 x^{2}+9 x\right.
\end{array} \\
& +\frac{\left(1 x^{3}+3 x^{2}+x\right)}{-2 x^{2}+10 x+0} \\
& +\frac{\left(+2 x^{2}+6 x+2\right)}{16 x+2}
\end{aligned}
$$

22. Three of the roots of a polynomial are $4,-3 i$, and $2-\sqrt{7}$. What are all of the roots of this polynomial? Explain.

$$
\begin{aligned}
& x^{2}=-9 \\
& x= \pm \sqrt{-9} \\
& x= \pm 3 i
\end{aligned}
$$

23. Find the zeros and multiplicity of zeros of the following function: $f(x)=2 x^{5}-12 x^{4}+18 x^{3}$.

