Advanced Algebra – Chapters 5 and 6 Review

Name		Period	
1.	Solving the quadratic equation by using any method: $3x^2 - 15 = 0$.	1	
2.	Solving the quadratic equation by using any method: $x^2 + 4x = -20$	2	
3.	Solving the quadratic equation by using any method: $3(x + 3)^2 = -12$	3	
4.	Solving the quadratic equation by using any method: $2x^2 - 5x = 12$	4	
5.	Solving the quadratic equation by using any method: $9x^2 - 64 = 0$	5	

6. 6. Write the following expression as a complex number in standard form: (7 - 2i) - (3 - 3i)7. Write the following expression as a complex 7. _____ number in standard form: (3 - 2i)(2 + 5i)8. _____ 8. Factor the following expression completely: $20x^2 - 6x - 2$ Factor the following expression completely: 9. _____ 9. $16x^2 - 81$ Factor the following expression completely: 10. _____ 10. $7u^2 - 4u - 3$ A model for Kloefkorn Construction's 11. Price: _____ 11. revenue is $R = -15p^2 + 300p + 12000$, where *p* is the price in dollars of the company's Maximum revenue: product. What price will maximize the revenue? What will be the maximum revenue?

- 12. The equation for the motion of a projectile fired straight up at an initial velocity of 64 ft/sec is $h = -16t^2 + 64t$, where *h* is the height in feet and *t* is the time in seconds. Find the time the projectile needs to reach its highest point. How high will it go?
- 12. Time: _____

Height:

13. Year: _____

13. From 1990 to 1996, the consumption of poultry per capita is modeled by $y = -0.2125t^2 + 2.615t + 56.33$, where t = 0 corresponds to 1990. During what year was the consumption of poultry per capita at about 61 per capita?

14.

Find the vertex of the quadratic function and explain how you found it. Identify the axis of symmetry. Identify the *y*-intercept. Then graph the quadratic function.

$y = 4x^2 + 8x - 45$	Graph:
Vertex:	+++++ + ++++++++++++++++++++++++++++++
How did you figure out the vertex?	5-
	-5 5
Axis of symmetry:	
y-intercept:	-5-

List all possible rational zeros of the function $f(x) = 5x^3 + 2x^2 + 16x + 9$. Do not find the zeros. 15.

Solve the following equation, giving exact answers: $x^3 - 2x^2 - 10x + 20 = 0$. 16.

Solve the following equation, giving exact 17. _____ answers: $x^4 + 3x^2 = 10$. 17.

18. Write a polynomial function in standard form that has zeros of 4, -2, and 0. Classify the polynomial by number of terms and degree.

19.

18. Standard

Name by	
number of terms:	

 $x \rightarrow -\infty$ $f(x) = -2x^3 + 5x^2 + 9x - 10$ by filling in the blanks. $\lim f(x) =$ _____ $x \rightarrow +\infty$

Also, use your graphing calculator to find the relative maximum(s) and minimum(s).

Describe the end behavior of the function

Relative maximum(s)

Relative minimum(s)_____

form:
Name by degree:

19. $\lim f(x) =$ _____

16. _____

15. _____

20. Divide $(x^4 + 2x^3 - 3x - 1) \div (x + 4)$ by synthetic division.

20. _____

- 21. Divide $(5x^4 + 14x^3 + 9x) \div (x^2 + 3x + 1)$. by long division.
 - 21. _____

22. Three of the roots of a polynomial are 4, -3i, and $2 - \sqrt{7}$. What are all of the **<u>roots</u>** of this polynomial? Explain.

Find the zeros and multiplicity of zeros of the following function: $f(x) = 2x^5 - 12x^4 + 18x^3$.

23.