## Chapter Five Review



1. Solving the quadratic equation by using any method: $3 x^{2}+8 x-3=0$. "b" Factor

2. Solving the quadratic equation by using any method: $\frac{-4 x^{2}}{-4}=\frac{35}{-4}$

$$
\begin{aligned}
\sqrt{x^{2}} & =\sqrt{-\frac{35}{4}} \\
x & = \pm i \frac{\sqrt{35}}{\sqrt{45}} \\
x & = \pm i \frac{\sqrt{35}}{2}
\end{aligned}
$$

3. Solving the quadratic equation by using any method: $\frac{4(x-2)^{2}}{4}=\frac{-8}{4}$

$$
\begin{array}{ll}
\text { Isolate } & \sqrt{(x-2)^{2}}=\sqrt{-2} \\
\text { Variable } & x-2= \pm i \sqrt{2} \\
& +2+2 \\
& x=2 \pm i \sqrt{2}
\end{array}
$$

4. Solving the quadratic equation by using any
$\begin{aligned} \text { method: } x^{2}+2 x-2 & =0 \text { " } b^{\prime \prime} \text { " Quadratic } \\ \text { Factor... }(x \quad 2)(x-1) & =0 \quad \text { OR Formula }\end{aligned}$
doesn't $(x 2)(x<1)=0$

5. Solving the quadratic equation by using any

Quad. Formula : $3 x^{2}-14 x=-49=0$
$a=3$
$b=-14$
$c=49$

$$
\begin{aligned}
x= & \frac{-(-14) \pm \sqrt{(-14)^{2}-(4)(3)(49)}}{2(3)} \\
= & \frac{14 \pm \sqrt{196-588}}{6} \\
& \frac{14 \pm \sqrt{-392}}{6} \\
& \frac{74 \pm 14^{7} \sqrt{2}}{6_{3}}=\frac{7 \pm 7 i \sqrt{2}}{3}
\end{aligned}
$$

1. $x=\frac{1}{3} \quad x=-3$
2. $\begin{aligned} x & =\frac{i \sqrt{35}}{2} \quad x \\ \approx 2.96 i \quad & \approx-\frac{i \sqrt{35}}{2} \\ & \approx-2.96 i\end{aligned}$
3. $x=2+i \sqrt{2} \quad x=2-i \sqrt{2}$
4. 



$$
\begin{aligned}
x & =\frac{-(2) \pm \sqrt{(2)^{2}-(4)(1)(-2)}}{2(1)} \\
& =\frac{-2 \pm \sqrt{4+8}}{2} \\
& =\frac{-2 \pm \sqrt{12}}{2}=\frac{-2 \pm 2 \sqrt{3}}{2}=-1 \pm \sqrt{3}
\end{aligned}
$$

5. $x=\frac{7+7 i \sqrt{2}}{3} \quad x=\frac{7-7 i \sqrt{2}}{3}$
6. Solving the quadratic equation by using any method: $(x-2)^{2}+64=0$ "ho b"
Sq. Roots

$$
\begin{gathered}
\sqrt{(x-2)^{2}}=\sqrt{-64} \\
x-2= \pm 8 i \\
+2=+2 \\
x=2 \pm 8 i
\end{gathered}
$$

7. Write the following expression as a complex number in standard form: $(7+2 i)-(3+3 i)$
8. Write the following expression -as a complex number in standard form: $(5+3 i)(2-4 i)$

$$
\begin{aligned}
& 10-20 i+6 i-12 i^{2} \\
& 10-14 i-12(-1) \\
& 10-14 i+12 \\
& 22-14 i
\end{aligned}
$$

Write the following expression as a complex number in standard form: $\frac{3-i(2-i)}{2+i(2-i)}$
$\underbrace{(7+2 i)+(-3-3 i)}_{4-i}$
9. $\qquad$
7. $\qquad$
8. $\qquad$ $22-14 i$

$$
\frac{6-3 i-2 i+i^{2}}{4-3 i+2 i-i^{2}}=\frac{6-5 i+(-1)}{4-(-1)}=\frac{\dot{5}^{\prime}-8^{\prime}}{8,}=\frac{1-i}{1}=1-i
$$

Not SOlve $!11$
10. Factor the following expression completely:

11. Factor the following expression completely:

12. Factor the following expression completely:

13. Factor the following expression completely:
$2 x^{2}-\frac{x}{\text { Add }}-21$

14. Factor the following expression completely:

15. Factor the following expression completely:

16. A model for Healey Construction's initial revenue is $R=-15 p^{2}+300 p+12000$. where $p$ is the price in dollars of the company's
$a=-15$
$b=300$
$c=12000$ product. What price will maximize the revenue? What will be the maximum revenue?
VERTEX

$$
p \quad x=\frac{-300}{2(-15)}=\frac{-30 \phi}{-30}=10 \text { price }
$$

$$
R f(10)=-15(10)^{2}+300(10)+12000
$$

$=13,500$ Revenue if items are priced at $\$ 10^{*}$.
13. $\qquad$
14. $\qquad$ $(5 x-2)(x+1)$
15. $\qquad$
16. Price: $\underbrace{\mathbb{B} / 0^{00}}$

17. The equation for the motion of a projectile fired straight up at an initial velocity of $64 \mathrm{ft} / \mathrm{sec}$ is $h=-16 t^{2}+64 t$, where $h$ is the height in feet
$a=-16$ and $t$ is the time in seconds. Find the time the $b=64$ projectile needs to reach itschighest point. How $b=64$ high will it go? At what height does it start before $c=0$ the projectile is fired? Vertex

$$
t \quad x=\frac{-b}{2 a}=\frac{-64}{2(-16)}=-\frac{-64}{32}=2 \text { seconds }
$$

$$
h \quad f(2)=-16(2)^{2}+64(2)
$$

$$
=64 \text { ft. high@ } 2 \text { seconds }
$$

17. Time: $\qquad$

18. From 1990 to 1996 , the consumption of poultry per capita is modeled by $y=-0.2125 t^{2}+2.615 t+56.33$, where $t=0$ corresponds to 1990. During what year was the consumption of poultry per capita at about 61 per capita?

$$
\begin{aligned}
\mid 61=-.2125 t^{2}+2.615 t & +56.33 \\
-61 & -61
\end{aligned}
$$

18. Year: $\qquad$ 1992 and 2000

$$
\begin{aligned}
& 0=-\frac{-2125 t^{2}+2.615 t-4.67}{2(-.2125)} \Rightarrow \quad x \approx 2.17 \text { yrs. after } 1990 \ldots \text { so, } 1992 \\
& x=\frac{-2.615 \pm \sqrt{(2.615)^{2}-(4)(-.2125)(-4.67)}}{} \quad \Rightarrow \approx 10.14 \text { yrs. after } 1990 \ldots \text { so, } 2000
\end{aligned}
$$

Find the vertex of the quadratic function and explain how you found it. Identify the axis of symmetry. Identify the coordinate of the $y$-intercept. Identify the coordinates of the $x$-intercepts). Also identify if the vertex of the graph is a minimum or maximum. Then graph the quadratic function.
$a=-.2125$
$b=2.615$
$c=-4.67$
19. $y=4 x^{2}+$
positive
opens $u_{p}$ Vertex: Vertex:

Minimum
$x=\frac{-b}{2 a}=\frac{-(8)}{2(4)}$
$=\frac{-8}{8}=-1$


Axis of symmetry: $\qquad$ $y$-intercept: $\qquad$
$x$-intercepts):
 $x$-intercepts): No Real number intercepts


