17. A manufacturer determines that the number of drills it can sell is given by the formula $D=-3 p^{2}+180 p-285$ where p is the price of the drills in dollars.
a) At what price will the manufacturer sell the maximum number of drills?
$p \quad x=\frac{-b}{2 a}=\frac{-180}{2(-3)}=\frac{-180}{-6}=30$
b) What is the maximum number of drills that can be sold?

D

$$
\begin{aligned}
f(30) & =-3(30)^{2}+180(30)-285 \\
& =2415 d r i l l s
\end{aligned}
$$

vertex

18. A town is planning to fence around a new playground that is to be 15 feet longer than the width. The playground equipment calls for an area of 250 square feet. Find the dimensions of the playground.

$$
\begin{aligned}
& A=l \cdot \omega \\
& 250=(\omega+15) \omega \\
& 250=\omega^{2}+15 \omega \\
&-250 \quad-250
\end{aligned}
$$

$$
\begin{aligned}
& W=10 f+ \\
& l=(10)+15
\end{aligned}
$$

$$
0=\omega^{2}+15 w-250
$$

$$
l=25 \mathrm{ft}
$$

$$
\begin{gathered}
0=(\omega+25)(\omega-10) \\
w=\downarrow 25 \quad \omega=10
\end{gathered}
$$

$$
\begin{aligned}
& \omega+25)(\omega-10) \\
& \omega=125 \quad \omega=10 \\
& \text { modeled hi the function }
\end{aligned}
$$

$$
h=-0.0032 d^{2}+d+3
$$

where h is the height in feet of the baseball and d is the distance in feet the baseball is from home plate.
a. What was the height of the ball at initial contact?

$$
3 \mathrm{ft}
$$

b. At what distance does the ballstrike the ground

$$
\begin{gathered}
0=-.0032 d^{2}+d+3 \ldots \text { use quad. Formula or Calculator } \\
d=315.47 \mathrm{ft} .
\end{gathered}
$$

c. How far away from home plate does the ball reach its maximum height?

$$
x=\frac{-b}{2 a}=\frac{-1}{2(-.0032)}=\frac{-1}{-.0064}=156.25 \mathrm{f+} \text {.away Vertex }
$$

d. What is the balls inaximum height?

$$
f(156.25)=-.0032(156.25)^{2}+(156.25)+3=81.125 \mathrm{ft} \text {. high }
$$

e. What is the height of the ball after 200 feet?

$$
\begin{aligned}
f(200) & =-.0032(200)^{2}+(200)+3 \\
& =75 \text { ft. high at } 200 \text { ft away from home plate }
\end{aligned}
$$

20. $y=-(x-2)^{2}+9$
a) Graph. (Graph at least five points)

x	y
0	5
1	8
2	9
3	8
4	5

b) What is the vertex?

$$
(2,9)
$$

e) List the transformations for the graph
(1) Reflect over x-axis
(2) Horizontal shift+ Right 2
(3) Vertical shift UP q
f) Write the coordinate of the y-intercept.

Plug in 0
$(0,5)$
$\begin{aligned} & y=-(0-2)^{2}+9 \\ &-(-2)^{2}+9 \\ &-4+9\end{aligned}$
g) Write the coordinate (s) of the x-intercep ts).

Plug in 0
$(5,0)(-1,0)$

$$
\begin{aligned}
& 0=-(x-2)^{2} \pm 9 \\
& -9 \\
& -9=-\frac{(x-2)^{2}}{-1} \\
& \sqrt{9}=\sqrt{(x-2)^{2}}
\end{aligned}
$$

for y
21. $y=2 x^{2}+8 x-1 \quad+\frac{ \pm 3}{}=x-2$
$x=2 \pm 3>-1$
a) Graph. (Graph at least five points)
$a=2$
$b=8$
$c=-1$
b) What is the vertex? $(-2,-9)$
c) What is the equation for the axis of
symmetry?
$x=-2$
d) Is the vertex a min or a max?

Minimum

e) List the transformations for the graph

$$
\begin{aligned}
& \text { (1) Vertical stretch by } 2 \\
& \text { (2) Horizontal shift+ LEFT } \\
& \text { (2) Vertical shift DOWN } 9
\end{aligned}
$$

f) Write the coordinate of the y-intercept. ${ }^{\text {O}}$

Plug in 0
,
\square
$(0,-1)$

$$
y=2(0)^{2}+8(0)-1
$$

g) Write the coordinate (s) of the x-intercep ts).
$\begin{array}{ll}\text { Plugin } 0 & (.12,0)(-4.12,0) \\ \text { for } y & \\ & 0=\frac{-(8) \pm \sqrt{(8)^{2}-(4)}}{2(2)}\end{array}$

$$
x=\frac{-(8) \pm \sqrt{(8)^{2}-(4)(2)(-1)}}{2(2)}=\frac{-8 \pm \sqrt{64+8}}{4}=\frac{-8 \pm \sqrt{72}}{4}<x \approx-4.12
$$

