\qquad

1. Suppose you are tossing an apple up to a friend on a third-story balcony. After t
$a=-16$ $b=38.4$ $c=.96$
seconds, the height of the apple in feet is given by $h=-16 t^{2}+38.4 t+0.96$. Your friend catches the apple just as it reaches its highest point. How long does the apple take to reach your friend, and at what height above the ground does your friend catch it?
$t \quad x=\frac{-b}{2 a}=\frac{-38.4}{2(-16)}=\frac{-38.4}{-32}=1.2$ seconds Vertex
h $\quad f(1.2)=-16(1.2)^{2}+38.4(1.2)+0.96$
$=24 \mathrm{ft}$. above ground after 1.2 seconds

2. The barber's profit p each week depends on his charge c per haircut. It is modeled by
$a=-200$
$b=2400$
$c=-4700$
the equation $p=-200 c^{2}+2400 c-4700$. Sketch the graph of the equation. What
price should he charge for the largest profit y

$$
\text { " } P^{\prime \prime} \frac{\text { price should he charge for the largest profit? }}{y}
$$

$$
\text { c } \quad x=-\frac{b}{2 a}=\frac{-2400}{2(-200)}=\frac{-2400}{-400}=16 \text { charge }
$$

$$
\text { p } f(6)=-200(6)^{2}+2400(6)-4700
$$

$$
=\$ 2500 \text { profit @ Maircutcharge }
$$

3. A skating rink manager finds the revenue R based on an hourly fee F for skating is $a=-480 \quad$ represented by the function $R=-480 F^{2}+3120 F$. What hourly fee will product e $b=3120 \quad$ maximum revenues?

$$
\begin{aligned}
\text { F } \quad x=\frac{-b}{2 a} & =\frac{-3120}{2(-480)}=\frac{-3120}{-960}=3.25 \mathrm{fec} \\
\text { R } \quad f(3.25) & =-480(3.25)^{2}+3120(3.25) \\
& =5070 \text { Revenue }
\end{aligned}
$$

4. The path of a baseball after it has been hit is modeled by the function $a=-.0032 h=-.0032 d^{2}+d+3$, where h is the height in feet of the baseball and d is the
$b=1 \quad$ distance in feet the baseball is from home plate. What is the maximum height Vertex (y-coord.) $c=3$ reached by the baseball?. How far is the baseball from home plate when it reaches it's maximum height? $\begin{gathered}x \text {-ordinate } \\ \text { of Vertex }\end{gathered}$

5. A lighting fixture manufacturer has daily productions costs
$a=.25 \quad$ of $C=0.25 n^{2}-10 n+800$, where C is the total daily cost in dollars and n is the
$b=-10$ number of light fixtures produced How many fixtures should be produced to
$c=800$ yield $\underset{\text { Vertex }}{\text { minimum }} \operatorname{cost}$?
$n \quad x=\frac{-b}{2 a}=\frac{-(-10)}{2(.25)}=\frac{10}{.5}=20$ Fixtures
$C f(20)=\$ 700$ min. cost if producing 20 fixtures

