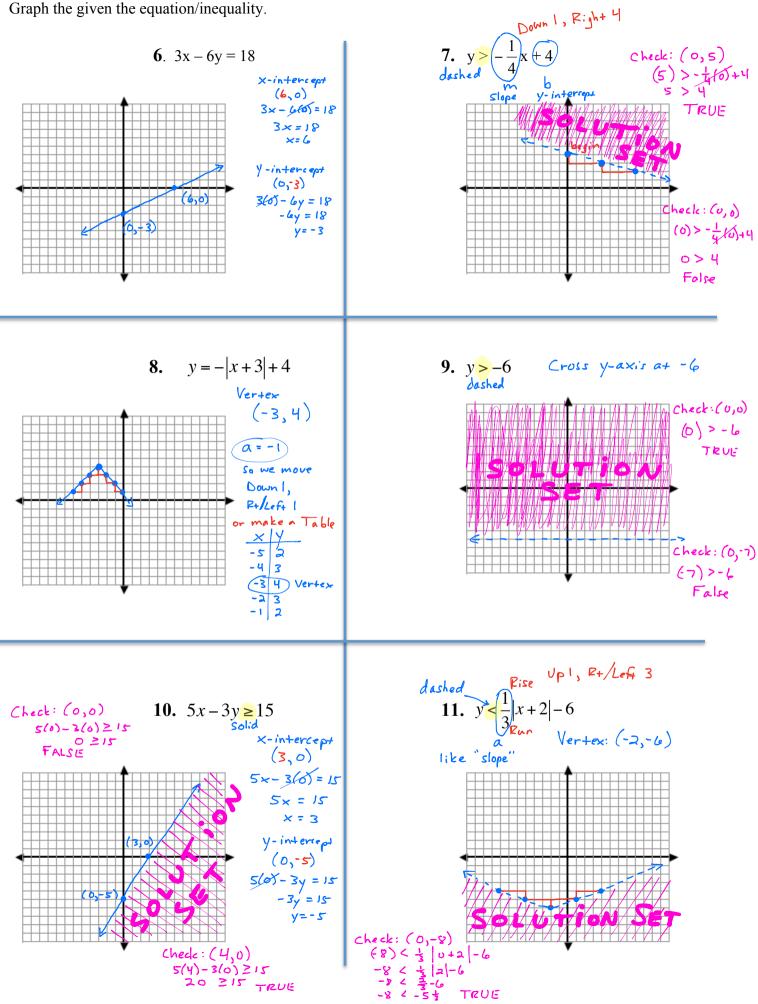
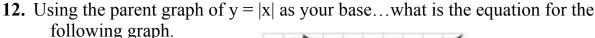
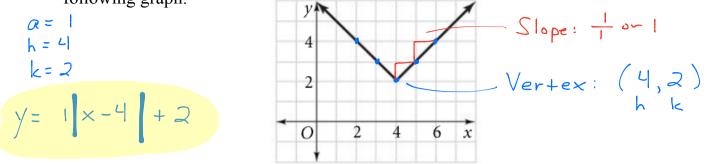

Advanced Algebra Ch. 2 review

Use these ordered pairs to answer questions 1-3.

- (0, 3), (-1, 2), (2, 3), (-2, 4), (1, 2), (3, 0)1. List the Domain: Range: $\frac{20, -1, 2, -2, 1, 3}{5} \times -coords.$ Range: $\frac{23, 2, 4, 0}{5} \times -coords.$
- **2.** Convert the relation to a mapping diagram.



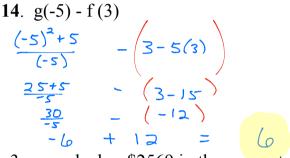

3. Is the relation a function? YES OR NO Explain: Each input has exactly one unique output.


Find the slope of the line that passes through the given points and then write the equation in all 3 forms.

4.
$$(3, -2), (5, 4)$$

 $y = \frac{2}{y}, \frac{1}{y}, \frac{1}{x}, \frac{1}{x}, \frac{1}{y}, \frac{1}{x}, \frac{1}{x}, \frac{1}{y}, \frac{1}{x}, \frac{1}{x}, \frac{1}{y}, \frac{1}{x}, \frac{$

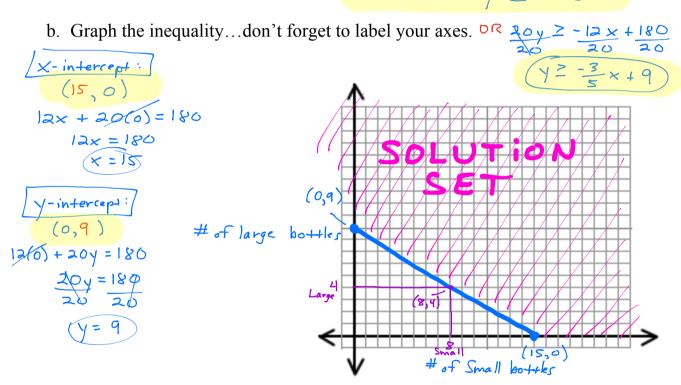
Graph the given the equation/inequality.



Evaluate the function if f(x) = 3 - 5x and $g(x) = \frac{x^2 + 5}{x}$

13. f(4) = 3 - 5(4)= 3 - 20 f(4) = -17

15. Alexandra has a college savings account. After 3 years she has \$2569 in the account. After 10 years she has \$7630.


a) Write a linear equation in slope-intercept form for the amount of money saved (y) after (t) years. (Hint...find the slope first!) $\begin{pmatrix} 3 & 2569 \\ x_1 & y_1 \\ x_2 & y_2 \\ choose \\ (3, 2569) \end{pmatrix} \begin{pmatrix} 10 & 7430 \\ 10 & -3 \\ y_1 & x_2 & y_2 \\ choose \\ (3, 2569) \end{pmatrix} \begin{pmatrix} -2569 & 723(x-3) \\ y-2569 & 723(x-3) \\ y-2569$

16. Larry is going on a backpacking trip and will need to carry enough water for the duration of the trip. He figures he will need at least 180 oz. of water total. A small bottle holds 12 oz. of water, while a large bottle holds 20 oz. of water. \times

a. Write an inequality relating the number of small bottles (x) and the number of large bottles (y) needed to meet his water needs. 11

$$X = \#$$
 of small bottles
 $Y = \#$ of large bottles

12× + 20y ≥ 180

c. Use the graph to answer the question. If Larry only has 4 large water bottles, what is the minimum number of small water bottles he will need to carry.

$$\begin{array}{rcl}
12x + 20(4) & \geq 180\\
12x + 80 & \geq 180\\
- 80 & -80\\
\hline 12x & -80\\
\hline 12x & \geq 100\\
\hline 12 & 12\\
\hline x & \geq 8.3\\
\hline x & \geq 8.3\\
\end{array}$$
So, Larry needs to carry
at least 9 small H₂0 bottles

$$\begin{array}{rcl}
X & \geq 9\\
\hline X & \geq 8.3\\
\hline \end{array}$$