1. Find the domain of the function. Write your answer in interval notation.

$$f(x) = \frac{\sqrt{x}}{|x|}$$

Domain _____

2. Find the domain of the function. Write your answer in interval notation.

$$g(x) = \frac{x^2}{(x+2)(x-1)\sqrt{x+1}}$$

Domain _____

- 3. Use the graph of the function f to answer the following questions.
- a) State the domain:
- b) State the range:_____
- c) List the *y*-intercept(s)
- d) List the *x*-intercept(s)_____
- e) Find f(-2)
- f) For what values of x does f(x) = 2?
- g) For what values of x is $f(x) \le 0$? Give your answer in interval notation.
- h) Over what interval(s) is f decreasing?
- i) Over what interval(s) is f increasing?
- k) List the local minimum(s).

function f

- j) List the local maximum(s).
- 1) Is **f** even, odd or neither?
- i) is **j** even, odd or neither:

4. The graph of a function f is illustrated on the grid below.

a. List the transformations to graph

b. Graph F(x) on the grid.transformed to the graph of **AND** draw the graph of F(x).

5.	Graph the function, showing at least five points.	Then fill in the blanks below.
	Coordinate of the Vertex	Where is $f(x) > 0$?
	Equation for the Axis of Symmetry	Where is $f(x) < 0$?
	x-intercepts	Domain
	y-intercepts	Range

6. Determine the quadratic function whose graph is given.

Standard Form:

7. a. Solve the inequality. Write your answer in interval notation.

b. Solve the inequality. Write your answer in interval notation.

 $2x^2 > 12x + 14$

8.	The price p (in dollars) and the quantity x sold of a certain product obey the demand equation		
	$p = -\frac{1}{30}x + 120$		
	a) Express the revenue R as a function of x where $R = xp$.		
	b) Find the quantity of x that maximizes revenue.		
	c) Find the maximum revenue.		
	d) Find the price that produces the maximum revenue.		
9.	farmer with 2640 meters of fencing wants to enclose a rectangular plot that borders a barn. If the farmer does not fence the side along the barn, what is the largest area that can be enclosed? Express the area A of the rectangle as a function of x . Find the maximum area, the length and the width of the rectangle.		
	Equation for A as a function of x		

Maximum Area_____

Width_____

Length_____