Pre Calculus
 Ch 3 and 4 Cumulative Review Sheet

Name
Date \qquad

1. Find the domain of the function. Write your answer in interval notation.
$f(x)=\frac{\sqrt{x}}{|x|}$
Domain \qquad
2. Find the domain of the function. Write your answer in interval notation.

$$
g(x)=\frac{x^{2}}{(x+2)(x-1) \sqrt{x+1}}
$$

Domain \qquad
3. Use the graph of the function f to answer the following questions.
a) State the domain: \qquad
b) State the range: \qquad

j) List the local maximum(s).

1) Is \boldsymbol{f} even, odd or neither?
k) List the local minimum(s).
4. The graph of a function f is illustrated on the grid below.
a. List the transformations to graph \qquad
b. Graph $F(x)$ on the grid.transformed to the graph of $\mathbf{A N D}$ draw the graph of $F(x)$.

5. Graph the function, showing at least five points. Then fill in the blanks below.
\square

1	1
-1	-1

Coordinate of the Vertex \qquad
Equation for the Axis of Symmetry \qquad
x-intercepts \qquad
y-intercepts \qquad

Where is $f(x)>0$? \qquad
Where is $f(x)<0$?
Domain \qquad
Range \qquad
6. Determine the quadratic function whose graph is given.

Standard Form: \qquad
7. a. Solve the inequality. Write your answer in interval notation.
b. Solve the inequality. Write your answer in interval notation.

$$
2 x^{2}>12 x+14
$$

8. The price p (in dollars) and the quantity x sold of a certain product obey the demand equation
$p=-\frac{1}{30} x+120$
a) Express the revenue R as a function of x where $R=x p$.
b) Find the quantity of x that maximizes revenue.
c) Find the maximum revenue.
d) Find the price that produces the maximum revenue.
9. A farmer with 2640 meters of fencing wants to enclose a rectangular plot that borders a barn. If the farmer does not fence the side along the barn, what is the largest area that can be enclosed? Express the area A of the rectangle as a function of x. Find the maximum area, the length and the width of the rectangle.

Equation for A as a function of x \qquad
Maximum Area \qquad
Width \qquad
Length \qquad

