Do 1-8 on a separate sheet of paper.
a) Identify the conic (circle, parabola, ellipse, or hyperbola).
b) If it is a circle, identify the center and radius.

If it is a parabola, identify the vertex, focus, directrix, and points that define the latus rectum.
If it is an ellipse, identify the center, vertices, and foci.
If it is a hyperbola, identify the center, transverse axis, vertices, foci, and asymptotes.
c) Graph the conic.

1. $2 x^{2}-y^{2}+4 x+4 y-4=0$
2. $9 x^{2}+4 y^{2}-18 x+16 y-11=0$
3. $(x-2)^{2}=4(y-3)$
4. $2 x^{2}+2 y^{2}-12 x+8 y-24=0$
5. $(y+1)^{2}=-4(x-2)$
6. $(x+5)^{2}+4(y-4)^{2}=16$
7. $x^{2}+8 x=4 y-8$
8. $(y-3)^{2}-(x+2)^{2}=4$

Write the equation(s) of the circle with the given characteristics:
9. Center $(-4,3)$ tangent to the x - axis.
10. Radius 5 tangent to the line $\mathrm{x}=2$.

Write the standard form equation of the parabola with the given characteristics:
11. Vertex $(3,1)$ Focus: $(1,1)$
12. Vertex $(-4,2)$ containing pt. $(-2,3)$

Write the standard form equation of the ellipse with the given characteristics:
13. Focus $(-4,0)$ Vertices $(\pm 5,0)$ 14. Center $(-1,1)$ Vertex $(-1,2)$ Foci $(-1,1 / 4)$

Write the standard form equation of the hyperbola with the given characteristics:
15. Focus $(0,6)$ Vertices $(0,-2) \&(0,2) \quad$ 16. Foci $(3,7) \&(7,7)$ Vertex $(6,7)$
17. A satellite dish is in the shape of a paraboloid. Find the location of the receiver, which is placed at the focus, if the dish is 6 feet across at its opening and 2 feet deep.

