Circle

$$
\begin{gathered}
\text { Center: }(h, k) \\
r=\text { radius }
\end{gathered}
$$

Standard Form: $(x-h)^{2}+(y-k)^{2}=r^{2}$

To graph: plot the center, then use the radius to get 4 points

$$
\text { General Form: } x^{2}+y^{2}+a x+b y+c=0
$$

To change from general form to standard form - complete the square

Parabola

Vertex: (h, k)
a is the distance from the vertex to the focus a is the distance from the vertex to the directrix

When " $x^{2 \text { " }}$ - the parabola is "regular"

- when a is positive - parabola opens up
- when a is negative - parabola opens down

When " y^{2} " - the parabola is "sideways"

- when a is positive - parabola opens to the right
- when a is negative - parabola opens to the left

To change from general form to standard form - complete the square.

Ellipse

$$
\begin{gathered}
\text { Center: }(h, k) \\
a>b>0 \\
b^{2}=a^{2}-c^{2}
\end{gathered}
$$

a is the distance from the center to the vertices
b is the distance from the center to the co-vertices
c is the distance from the center to the foci

Standard Form: $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$

Foci: $(h+c, k)$ and ($h-c, k$)
Vertices: $(h+a, k)$ and ($h-a, k$)

Standard Form: $\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1$

Foci: $(h, k+c)$ and $(h, k-c)$
Vertices: $(h, k+a)$ and $(h, k-a)$
When the number under y^{2} is larger than the number under x^{2}, then the major axis of the ellipse is vertical.

To change from general form to standard form - complete the square.

Hyperbola

$$
\begin{gathered}
\text { Center: }(h, k) \\
b>a>0 \\
b^{2}=c^{2}-a^{2}
\end{gathered}
$$

a is the distance from the center to the vertices
b is the distance from the center to the "edge of the box"
c is the distance from the center to the foci

Standard Form: $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

Foci: $(h+c, k)$ and ($h-c, k$)
Vertices: $(h+a, k)$ and ($h-a, k$)
Asymptotes: $y-k= \pm b / a(x-h)$
When the number under y^{2} is larger than the number under x^{2}, then the transverse axis of the hyperbola is horizontal.

Standard Form: $\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$

Foci: $(h, k+c)$ and $(h, k-c)$
Vertices: $(h, k+a)$ and $(h, k-a)$
Asymptotes: $y-k= \pm a / b(x-h)$
When the number under x^{2} is larger than the number under y^{2}, then the transverse axis of the hyperbola is vertical.

To change from general form to standard form - complete the square.

