Simple Interest
$I=\operatorname{Pr} t$
$1=$ Interest Charged
$r=$ interest Rate $\mathrm{t}=$ time (in years)

Continuously Compounded Interest
$A=P\left(1+\frac{r}{n}\right)^{n t}$
$\mathrm{P}=$ Principal ($\$$)
$A=P e^{r t}$
$\mathrm{P}=$ Principal (\$)
$r=$ interest Rate
$n=$ number of times Compounded $t=$ time (years)
$t=$ time (years)

1. Find the amount that results from each investment after 10 years:

$$
042 \quad n=1
$$

$$
n=12
$$

a. $\$ 5,000$ invested at 4.2% compounded annually.

$$
5000\left(1+\frac{.42}{1}\right)(\$ 7,541.79)
$$

c. $\$ 5,000$ invested at 4.2% compounded daily.

$$
h=365
$$

$$
\begin{gathered}
5000\left(1+\frac{.042}{365}\right)^{(365.10)} \\
(7,609.62
\end{gathered}
$$

2. Find the present value needed to get $\$ 2,000$ after 4 years at 5\% compounded monthly.

$$
\begin{array}{rl}
A & =P\left(1+\frac{5}{n}\right)^{n \cdot t} \\
2000 & =P\left(1+\frac{.45}{12}\right)^{(12.4)} \\
\frac{2000}{}=P(1.004167)^{48} \\
(1.004167)^{18} & P=\$ 1638.14
\end{array}
$$

b. $\$ 5,000$ invested at 4.2% compounded monthly

$$
5000\left(1+\frac{.042}{12}\right)^{(12.10)}
$$

d. $\$ 5,000$ invested at 4.2% compounded continuously.

$$
\begin{aligned}
& 5000 e^{(.042 \cdot 10)} \\
& P e^{r t}
\end{aligned}
$$

3. Find the present value needed to get $\$ 2,000$ after 4 years at 5\% compounded continuously.

$$
\begin{aligned}
& A=P e^{t e} \\
& 2000=e^{(.05 \cdot 4)} \\
& \frac{2000}{e^{2}} \frac{P \cdot e^{2}}{e^{2}} \quad R=s / 637.46
\end{aligned}
$$

4. Austin will be buying a used car for $\$ 12,000$ in 3 years. How much money should he ask his parents for now so that, if he invests it at 4.5\% compounded continuously, he

$$
\begin{aligned}
& \text { will have enough to buy the car? }(.045 \cdot 3) \\
& \begin{array}{l}
12000=P e^{(.045} \\
e^{.135} \\
R=\frac{P e^{(.135)}}{e^{.135}} \\
R, 4004.59
\end{array}
\end{aligned}
$$

6. How long will it take for an investment to double if it earns 5\% compounded continuously?

$$
\begin{aligned}
& A=P e^{r t} \\
& \frac{2}{1}=\frac{1 e^{(.05 t)}}{1} \\
& \ln 2=\operatorname{tre} .05 t \\
& \frac{\ln 2}{.05}=\frac{.05 t}{.05}
\end{aligned}
$$

5. How many years will it take for an initial investment of $\$ 20,000$ to grow to $\$ 50,000$? Assume a rate of interest of 6% compounded continuously.

6. How long will it take for an investment to triple if it earns 5% compounded continuously?

$$
\begin{aligned}
& 5 \% \text { s. compounded continuously? } \\
& \ln 3=\| \text { ane } \\
& \frac{\ln 3}{.05}=\frac{.05 t}{.05} \\
& t=21.97 \text { years }
\end{aligned}
$$

$$
N(t)=N_{0} e^{k t}
$$

\rightarrow Sir Isaac Newton, co-founder af
Law of Uninhibited Growth

$$
A(t)=A_{0} e^{k t}
$$

$A_{0}=$ initial Amount of Population $u(t)=$ Temp. after " $t^{\prime \prime} \mathrm{min}$.
$\mathrm{k}=$ Growth Rate (positive value) $\mathrm{T}=$ Constant Temp. $\mathrm{k}=$ decay rate (negative
$t=$ time (must be specified) un initial Temp. of a $t=$ time (instant)
heated object
8. The size N of an ant population at time t (in days) obeys the function: $\mathrm{N}(\mathrm{t})=800 \mathrm{e}^{0.034 t}$
a. Determine the number of ants at $\mathrm{t}=0$.

800 ants
c. What is the population after 15 days?
$800 e^{(.034 \times 15)}$

When will the ant population triple?

9. The population of Portland, Oregon follows the exponential law.

$$
.034 \longrightarrow 3.4 \%
$$

d. Where will the ant population reach 2,000 ?

$$
\ln \frac{5}{2}=\ln e^{.034 t}
$$

$t \approx 27$ days
26.9
a. Wis the population of the city and t is the time in years, express N as a function of t.

$$
N(t)=N_{0} e^{k t}
$$

c. What will the population be in 2020 ?

b. From the years 2000 to 2010 , the population of Portland increased from 529,000 to 584,000 , respectively. Write an equation assuming uninhibited growth. $\left(\ln \frac{584}{521} \cdot\right.$
$, N(t)=529,000 e^{\frac{(l)}{10}}$
$\frac{584.0000}{529.0,00}=\frac{525,000}{529,000} e^{(k \cdot 10)}$
$k=.00989$

$$
N(20) \approx=644,718 \text { people }
$$

$$
\ln \frac{584}{529}=\ln e^{10 k}
$$

$$
\frac{\ln \frac{584}{529}}{10}=\frac{\lambda k}{10}
$$

10. An object is heated to $100^{\circ} \mathrm{C}$ and is then allowed to cool in a room whose air temperature is $30^{\circ} \mathrm{C}$.
a. If the temperature of the object is $80^{\circ} \mathrm{C}$ after 5 minutes, write an equation using Newton's Law of Cooling.
b. When will its temperature be $50^{\circ} \mathrm{C}$?
or

$$
u(t)=30+(70)^{0.19416 t}
$$

$$
\begin{aligned}
& \begin{array}{l}
\left.50=30+(70)^{\frac{\log _{10} 50}{5}} \cdot t\right) \\
-30-30 \\
20=70^{.18416 t}
\end{array} \\
& \frac{\log _{70} 20}{.18416}=\frac{.18416 t}{.18416}
\end{aligned}
$$

\qquad -

