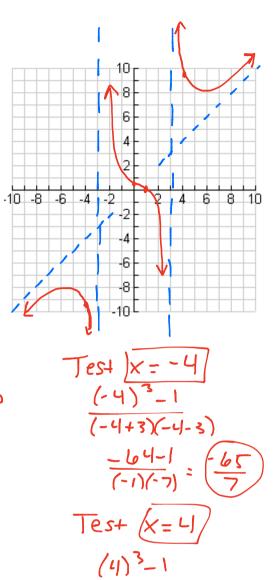
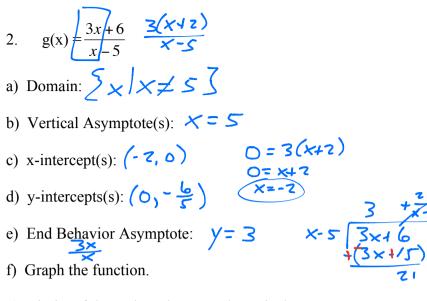
Precal chapter 5 Rational Functions Reviews


- $\times^{3}-1$ 1.
- a) Domain: $\{ \times | \times \neq 3, -3 \}$
- b) Vertical Asymptote(s): $\chi = 3$ $\chi = -3$
- c) x-intercept(s):(1, 0)d) y-intercepts(s): $(0, \frac{1}{4})$ e) End Behavior Asymptote: f) Graph the function. $x^2 + 0x 9$ $x^3 + 0x^4$

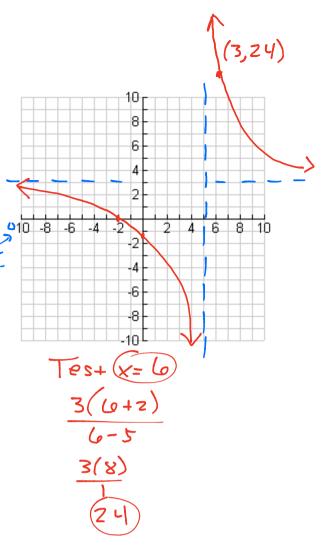
- (9x) g) Limits of the ends and near each vertical asymptote:

 $\lim_{x \to +\infty} f(x) = -\infty \quad \lim_{x \to +\infty} f(x) = \infty$


 $\lim_{x \to -2^+} f(x) = \infty$

 $\lim_{x \to z^{-}} f(x) = -\infty \qquad \lim_{x \to z^{+}} f(x) = \infty$

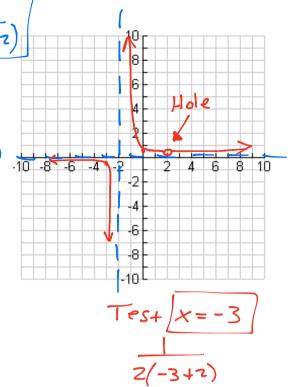
(4+3)(4-3)


 $\frac{64-1}{2} = \frac{63}{2}$

g) Limits of the ends and near each vertical asymptote:

 $\lim_{x \to -\infty} f(x) = 3 \qquad \lim_{x \to +\infty} f(x) = 3$

 $\lim_{x \to 5^{-}} f(x) = -\infty \lim_{x \to 5^{+}} f(x) = \infty$



3. $h(x) = \frac{x-2}{2x^2-8} \frac{x-2}{2(x^2-4)} = \frac{x-2}{2(x+2)(x-8)} \left(\frac{1}{2(x+2)} \right)$ a) Domain: $\frac{5}{2} \times \frac{2}{2} = 2$ Hole at x = 2b) Vertical Asymptote(s): $\chi = -2$ c) x-intercept(s): NONE $O \neq I$ $O = \frac{1}{2(x+2)}$

- d) y-intercepts(s): $(0, \frac{1}{4})$ $\frac{1}{2(0+2)} = \frac{1}{2(2)}$ e) End Behavior Asymptote: $\gamma = 0$
- f) Graph the function.
- g) Limits of the ends and near each vertical asymptote:

 $\lim_{x \to -\infty} f(x) = 0 \qquad \lim_{x \to +\infty} f(x) = 0$

 $\lim_{x \to -2^-} f(x) = -\infty \quad \lim_{x \to -2^+} f(x) = \infty$

 $\frac{1}{2(-1)}$

4. $p(x) = \frac{x^2 + x - 12}{x - 4}$ $\frac{(x + 4)(x - 3)}{x - 4}$ (6,15) 10 a) Domain: $5 \times 1 \times \neq 4$ 8 6 b) Vertical Asymptote(s): $\times = 4$ c) x-intercept(s): (-4,0)(3,0) 0 = (x+4)(x-3)d) y-intercepts(s): (0,3)e) End Behavior Asymptote: y = x+5f) Graph the function. y = x+54 ·10 -8 -6 -4 -2 2 6 8 10 À 2 4 -6 f) Graph the function.
g) Limits of the ends and near each vertical asymptote: 8 Test K=6 $\lim_{x \to -\infty} f(x) = -\infty \qquad \lim_{x \to +\infty} f(x) = \infty$ $\lim_{x \to -\infty} f(x) = -\infty \qquad \lim_{x \to +\infty} f(x) = \infty$ $\lim_{x \to -\infty} f(x) = -\infty \qquad \lim_{x \to -\infty} f(x) = \infty$ $\frac{(6+4)(6-3)}{(6-4)}$ $\frac{(10)(3)}{2}$ $\frac{30}{2}$ (15)

5.
$$f(x) = \frac{x+1}{x-1}$$

a) Domain: $\begin{cases} x | x \neq j \rceil$
b) Vertical Asymptote(s): $x = 1$
c) x-intercept(s): $(-1, 0) = x+1=0$
d) y-intercept(s): $(-1, 0) = x+1=0$
e) End Behavior Asymptote: $y = i = x-1 | x+1 = 1$
f) Graph the function.
(a) Limits of the ends and near each vertical asymptote:
(b) Looking only at $\frac{x+1}{x-1} > 0$, find the solutions for x.
(c) I im $f(x) = 1$
(c) Im $f(x) = -\infty$

6.
$$f(x) = \frac{(x+5)^2}{x^2-4} \frac{(x+5)(x+2)}{(x+2)(x-2)} \xrightarrow{x^2+10\times425} x^{4} = -14$$
a) Domain: $\int_{\mathbb{R}} x | x \neq \pm 2 \overline{j}$
b) Vertical Asymptote(s): $x = \pm 2$
c) x-intercept(s): $(-5, 0)$ mult, of $2 = x+5=0$
d) y-intercept(s): $(-5, 0)$ mult, of $2 = x+5=0$
i) y-intercept(s): $(-5, 0)$ mult, of $2 = x+5=0$
i) y-intercept(s): $(-5, 0)$ mult, of $2 = x+5=0$
i) y-intercept(s): $(-5, 0)$ mult, of $2 = x+5=0$
i) y-intercept(s): $(-5, 0)$ mult, of $2 = x+5=0$
i) y-intercept(s): $(-5, 0)$ mult, of $2 = x+5=0$
i) y-intercept(s): $(-5, 0)$ mult, $(-5,$