1. $R(x)=\frac{x^{3}-1}{x^{2}-9}$
a) Domain:
b) Vertical Asymptote(s):
c) x-intercept(s):
d) y-intercepts(s):
e) End Behavior Asymptote:
f) Graph the function.

g) Limits of the ends and near each vertical asymptote:
2. $\mathrm{g}(\mathrm{x})=\frac{3 x+6}{x-5}$
a) Domain:
b) Vertical Asymptote(s):
c) x-intercept(s):
d) y-intercepts(s):
e) End Behavior Asymptote:
f) Graph the function.
g) Limits of the ends and near each vertical asymptote:

3. $\mathrm{h}(\mathrm{x})=\frac{x-2}{2 x^{2}-8}$
a) Domain:
b) Vertical Asymptote(s):
c) x-intercept(s):
d) y-intercepts(s):
e) End Behavior Asymptote:
f) Graph the function.

g) Limits of the ends and near each vertical asymptote:
4. $\mathrm{p}(\mathrm{x})=\frac{x^{2}+x-12}{x-4}$
a) Domain:
b) Vertical Asymptote(s):
c) x-intercept(s):
d) y-intercepts(s):
e) End Behavior Asymptote:
f) Graph the function.
g) Limits of the ends and near each vertical asymptote:

5. $f(x)=\frac{x+1}{x-1}$
a) Domain:
b) Vertical Asymptote(s):
c) x-intercept(s):
d) y-intercepts(s):
e) End Behavior Asymptote:
f) Graph the function.

g) Limits of the ends and near each vertical asymptote:
h) Looking only at $\frac{x+1}{x-1}>0$, find the solutions for x .
6. $f(x)=\frac{(x+5)^{2}}{x^{2}-4}$
a) Domain:
b) Vertical Asymptote(s):
c) x-intercept(s):
d) y-intercepts(s):
e) End Behavior Asymptote:
f) Graph the function.

g) Limits of the ends and near each vertical asymptote:
h) Looking only at $\frac{(x+5)^{2}}{x^{2}-4} \geq 0$, find the solutions for x .
