Pre Calculus 5.1 Notes – Polynomials

Name	
Block	-
	Key Words:
	Polynomial
	Degree
	Leading Coefficient
	Constant
	Multiplicity
	Turning Point
	End behavior / Limits

A **POLYNOMIAL** is a function of the form:

f(x) =

where *n* represents a non-negative integer

Example:

Degree -

Power Function: f(x) = _____

Leading Coefficient -

Constant -

Your turn...

1. Determine which of the following are polynomial functions. If yes, state the degree and leading coefficient. If not, explain why it is not a polynomial function. a) $f(x) = x^4 - 8x^{-2} + 9x - 12$ Yes or No

Degree_____ Leading Coefficient _____ or Explain

b) $g(x) = 5x^{12} + 10x^8 - 1$ Yes No

Degree_____ Leading Coefficient _____ or Explain

c) $h(x) = -18x^2 - 4x^3 + 12 - 5x^6$ Yes No

Degree _____ Leading Coefficient _____ or Explain

d) $k(\mathbf{x}) = 13\sqrt{x}$ Yes No

Degree _____ Leading Coefficient _____ or Explain

End behavior:

so...we can generalize...

EVEN MULTIPLICITY

Let's GRAPH!!!

1. Find the following for: $k(x) = -x^3 - x^2 + 12x$

- a) Determine the zeros and their multiplicityb) Determine the degree.b) Determine the degree.
- c) Determine the maximum possible number of turning points.
- e) Determine the end behavior of f(x).

Power function: f(x) =____

 $\lim_{x \to \infty} f(x) = _$

 $\lim_{x \to -\infty} f(x) = \underline{\qquad}$

- 2. Find the following for: $h(x) = (x-3)^2(x+2)$
 - a) Determine the zeros and their multiplicity and whether they cross or touch the x-axis.

- d) Find the y-intercept.
- f) Sketch the graph of the function.

b) Determine the degree.

- d) Find the *y*-intercept.

c) Determine the maximum possible

number of turning points.

e) Determine the end behavior of f(x).

Power function: f(x) =____

 $\lim_{x \to \infty} f(x) = _$

 $\lim_{x \to -\infty} f(x) = \underline{\qquad}$

f) Sketch the graph of the function.

Your turn...

- 3. Find the following for: $h(x) = -x^2(x^2 4)(x 5)$
 - a) Determine the zeros and their multiplicityb) Determine the degree.b) Determine the degree.
 - c) Determine the maximum possible number of turning points.
 - e) Determine the end behavior of f(x).

Power function: f(x) =____

 $\lim_{x \to \infty} f(x) = _$

 $\lim_{x \to -\infty} f(x) = \underline{\qquad}$

f) Sketch the graph of the function.

d) Find the *y*-intercept.

- 4. Find the following for: $g(x) = (x-1)^2(x-3)(x+1)$
 - a) Determine the zeros and their multiplicity and whether they cross or touch the x-axis.
- b) Determine the degree.

d) Find the *y*-intercept.

e) Determine the end behavior of f(x).

c) Determine the maximum possible

number of turning points.

Power function: f(x) =____

 $\lim_{x \to \infty} f(x) = _$

 $\lim_{x \to -\infty} f(x) = \underline{\qquad}$

