Pre Calculus
5.1 Notes - Polynomials

Name
Block

Key Words:
Polynomial
Degree
Leading Coefficient
Constant
Multiplicity
Turning Point
End behavior / Limits

A POLYNOMIAL is a function of the form:

$$
f(x)=
$$

Example:
Degree -
Power Function: $\mathbf{f}(\mathbf{x})=$ \qquad

Leading Coefficient -

Constant -
Your turn...

1. Determine which of the following are polynomial functions. If yes, state the degree and leading coefficient. If not, explain why it is not a polynomial function.
a) $f(x)=x^{4}-8 x^{-2}+9 x-12 \quad$ Yes or No

Degree \qquad Leading Coefficient \qquad or Explain
b) $g(\mathrm{x})=5 x^{12}+10 x^{8}-1$

Yes No
Degree \qquad Leading Coefficient \qquad or Explain
c) $\quad h(\mathrm{x})=-18 x^{2}-4 x^{3}+12-5 x^{6} \quad$ Yes No

Degree \qquad Leading Coefficient \qquad or Explain
d) $k(x)=13 \sqrt{x}$

Yes No
Degree \qquad Leading Coefficient \qquad or Explain

End behavior:

Even positive

$\lim _{x \rightarrow \infty} f(x)=$ \qquad
$\lim _{x \rightarrow-\infty} f(x)=$ \qquad

Even negative

$\lim _{x \rightarrow \infty} f(x)=$ \qquad

Odd positive

$\lim _{x \rightarrow \infty} f(x)=$ \qquad $\lim _{x \rightarrow \infty} f(x)=$ \qquad

$$
\lim _{x \rightarrow-\infty} f(x)=
$$

$\lim _{x \rightarrow-\infty} f(x)=$ \qquad $\lim _{x \rightarrow-\infty} f(x)=$ \qquad

Turning point:
Multiplicity:
Your turn...
Sketch a graph of:
a) $\mathrm{f}(x)=x-3$
b) $\mathrm{f}(x)=(x-3)^{2}$
c) $\mathrm{f}(x)=(x-3)^{3}$
d) $\mathrm{f}(x)=(x-3)^{4}$

so...we can generalize...
EVEN MULTIPLICITY
ODD MULTIPLICITY

Let's GRAPH!!!

1. Find the following for: $k(x)=-x^{3}-x^{2}+12 x$
a) Determine the zeros and their multiplicity and whether they cross or touch the x -axis.
c) Determine the maximum possible number of turning points.
e) Determine the end behavior of $f(x)$.

Power function: $f(x)=$ \qquad

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)= \\
& \lim _{x \rightarrow-\infty} f(x)=
\end{aligned}
$$

2. Find the following for: $h(x)=(x-3)^{2}(x+2)$
a) Determine the zeros and their multiplicity and whether they cross or touch the x -axis.
b) Determine the degree.
d) Find the y-intercept.
f) Sketch the graph of the function.

b) Determine the degree.
d) Find the y-intercept. number of turning points.
e) Determine the end behavior of $f(x)$.
f) Sketch the graph of the function.

Power function: $f(x)=$ \qquad

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)= \\
& \lim _{x \rightarrow-\infty} f(x)=
\end{aligned}
$$

Your turn...
3. Find the following for: $h(x)=-x^{2}\left(x^{2}-4\right)(x-5)$
a) Determine the zeros and their multiplicity
b) Determine the degree. and whether they cross or touch the x -axis.
c) Determine the maximum possible number of turning points.
d) Find the y-intercept.
e) Determine the end behavior of $f(x)$.
f) Sketch the graph of the function.

Power function: $f(x)=$ \qquad

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)= \\
& \lim _{x \rightarrow-\infty} f(x)=
\end{aligned}
$$

4. Find the following for: $g(x)=(\mathrm{x}-1)^{2}(x-3)(x+1)$
a) Determine the zeros and their multiplicity
b) Determine the degree. and whether they cross or touch the x -axis.
c) Determine the maximum possible number of turning points.
d) Find the y-intercept.
e) Determine the end behavior of $f(\mathrm{x})$.
f) Sketch the graph of the function.

Power function: $f(x)=$ \qquad

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)= \\
& \lim _{x \rightarrow-\infty} f(x)=
\end{aligned}
$$

