\qquad

1. Rewrite the function $f(x)=-4 x^{2}+16 x+14$ in vertex form. Show all work!
2. Graph the function, showing at least five points. Then fill in the blanks below.

$$
f(x)=-3 x^{2}-3 x-2
$$

Coordinates of the Vertex \qquad
Equation for the Axis of Symmetry \qquad x-intercepts \qquad y-intercepts \qquad
3. Graph the function $g(x)=2(x-3)^{2}+1$. Show at least five points!

Increasing Interval(s) \qquad
Decreasing Interval(s) \qquad
Domain \qquad

Range \qquad

4. Determine the equation of the quadratic function that has a vertex at $(3,-6)$ and passes through the point $(-4,2)$. Show work for full credit. Write your final answer in standard form.
5. A chain-store manager has been told by the main office that daily profit, P, is related to the number of clerks working that day, x, according to the equation $P=-25 x^{2}+300 x$. What number of clerks will maximize the profit, and what is the maximum possible profit?
6. For a bottle rocket, the height, h, in meters, as a function of time t, in seconds, is given by $h=-4.9 t^{2}+38 t$. How long does it take for the bottle rocket to hit the ground?
7. The profit P, in dollars, gained by selling x handbags is modeled by the equation $P=-2 x^{2}+600$. How many handbags must be sold to obtain a profit of $\$ 550$?
8. A ball is thrown upward from ground level. Its height h, in feet, above the ground after t seconds is $h=48 t-16 t^{2}$. Find the maximum height of the ball.
9. The profit P , in dollars, gained by selling x computers is modeled by the equation $P=-5 x^{2}+100 x+5000$. How many computers must be sold to obtain a profit of $\$ 55,000.00$?
10. Suppose a ball is thrown directly upward from an initial height of 200 feet with an initial velocity of 96 feet per second. The function $h=-16 t^{2}+96 t+200$ models the throw. After how many seconds will the ball reach a height of 300 feet?
11. We throw an object upward from the top of a 1200 ft tall building (measured in feet). The height of the object t seconds after we threw it is $h=-16 t^{2}+160 t+1200$. How long does it take for the object to hit the ground?
12. The equation for the cost in dollars of producing automobile tires is $C=.000015 x^{2}-0.03 x+35$, where x is the number of tires produced. Find the number of tires that minimizes the cost. What is the cost for that number of tires?

