- a) Convert to radians: 100° 1.
- b) Convert to degrees: $\frac{7\pi}{15}$
- 2. The angle subtended by an arc is 54° and the radius is 8 feet,
- a) find the arc length.

b) find the area of the sector.

- 3. Use the picture below:
- a) Find the distance from point A to point C.
- b) Find the distance between point C and point D.

- 4. Let θ be in standard position with the point (-12, 5) on it's terminal side.
- a) Draw the terminal side of the angle and the reference triangle.
- b) Find the values of the six trig functions.

5.
$$\sin \theta = \frac{\sqrt{5}}{4}$$
, $\cot \theta < 0$

- a) Name the quadrant that θ is in.
- b) Draw the terminal side of the angle and the reference triangle.
- c) Find the values of the remaining trig functions.
- 6. Evaluate the following. Give exact answers.
- a) tan210°

- b) $\cos\left(-\frac{4\pi}{3}\right)$ c) $\csc^2\frac{2\pi}{3}$ d) $\cot\frac{7\pi}{2} + \sec\frac{\pi}{3}$

$$7. \qquad \frac{2\tan\frac{\pi}{2}}{1-\tan^2\frac{\pi}{2}}$$

- a) Write the expression as sine, cosine, or tangent of a single angle.
- b) Find the exact value of the expression.
- 8. Find the exact value of $cos(165^{\circ})$
- 9. Given $\sin \alpha = \frac{1}{2}$, $0 < \alpha < \frac{\pi}{2}$ and $\cos \beta = \frac{3}{4}$, $0 < \beta < \frac{\pi}{2}$
- a) find $tan(\alpha \beta)$
- b) find $\sin(2\alpha)$
- c) find $\cos \frac{\beta}{2}$
- 10. Verify each identity:

a)
$$\sin\theta \tan\theta + \cos\theta = \sec\theta$$

b)
$$\frac{\sin(\alpha + \beta)}{\tan \alpha + \tan \beta} = \cos \alpha \cos \beta$$
 c) $1 - \frac{\sin^2 \theta}{1 + \cos \theta} = \cos \theta$

c)
$$1 - \frac{\sin^2 \theta}{1 + \cos \theta} = \cos \theta$$