FUNCTIONS AND RULES (equations)

1. Sketch a graph of the situation. Label each section.

The distance from home a family is that drives 3 miles to the movie theater, returns home because they forgot their money, and then drives 1 mile to the movie rental store $\int_{-\infty}^{\infty} f$

Find the domain and range for each relation.

Domain is x-values {3,1,2,5,3}

Find the range of function rule y = 3x + 4 for each domain. Range is: $\{0, 5, 11, 12\}$

3. {2,9,11.5}

X 7 2 10 9 31

y = 3(2) + 4 y = 10

3(9)44

3(11.5)+4

Range:s: {10,31,38.5}

- Model each rule with a table of values and a graph.
- **4.** f(x) = 9 x

5	f(x)		₂ 2		3
Э.	J(X)	=	х	+)

- · · · · · · · · · · · · · · · · · · ·		
X	у	
- 7_	- And Andrews	9-(-2)
_	10	9-(-1)
0	q	9-(0)
	8	9-(1)
2	7	9-(2)
	L	' <u> </u>

X	f(x)	
-2	7	(-2)2+3= 4+3
)	ч	(-1)2+3=1+3
0	3	(0)2 +3=0+3
1	4	(1)2+3=1+3
2	7	(2)2+3:4+3

- 6. Label the following situations as discrete (not connected) or continuous (connected)
 - a) the graph of your growth from birth to age 12 Continuous
 - b) the graph of the number of pops you buy at the snack shop $D_{i,j}$
 - c) the graph of the speed of a motorcycle Continuous

Determine whether each relation is a function. EXPLAIN WHY OR WHY NOT.

termine whether each re			
Input		Out	ps
3.	х	у	7
	-4	2	•
	-2	1	
	0	0	
	1	2	

n +
Function.
Each input has
exactly one
output

4.	X	у
	-3	-2
	4	>-1
	8	-1
	4)~	>-2

NOT A	Fu	action.
4 has	2	different
ou+	out	-7 .

Write	a functi	ion rule $\gamma = 2$	for each table.
13.	х	У	Pate of
	-2	-3 、	Rate of Sz Change
	-1	-1	7 2
	0		> 2
	1	3 <) z
	2	5	

14.
)3 Changes by 3 every 2 x's.

$$M = \frac{3}{2}$$

$$53$$

$$b = 7$$

$$y = \frac{3}{2}x + 7$$

Write a function rule for each situation.

- 14. the cost of staying in a motel at \$65 per night $\sqrt{(n)} = 65 \text{ m}$
- 15. the amount of money you earn working for \$7.15 an hour +(h)= 7.15 h
- 16. the total cost of your lunches if you spend \$3.25 each day and start with

\$50.
$$f(d) = 3.25d + 50$$

begin

- 17. You go to candy store to buy jelly beans. Your total price depends on the weight. The cost is \$1.15 per pound.
 - a. Write a function rule describing the situation. $f(\rho) = 1.15 \rho$
 - b. How much would it cost you if the bag of jelly beans weighed 5 lbs?

Rate of Change - Equations - Graphing

1. Find the rate of change from the graphs.

2. Find the slope of the lines with the following ordered pairs:

a.
$$(2.5)$$
 and (7.9)

$$M = \frac{\sqrt{z-1}}{x_2-x_1} = \frac{9-5}{7-2} = \frac{1}{5}$$
b. $(-2,4)$ and $(1,-5)$

$$M = \frac{-5-4}{1-2} = \frac{9}{3} = \frac{1}{3}$$
3. Find the rate of change. The minimum wage in 1994 was \$5.25. In 2010, the minimum wage is \$7.15.

$$So + Per year.$$

$$\frac{7.15-5.25}{2010-1994} = \frac{9}{16} = \frac{13}{190} = \frac{1}{190} = \frac{1$$

b. (-2,4) and (1,-5)

$$m = \frac{-5-4}{1-2} = \frac{-9}{3} = \boxed{-3}$$

- 4. Would the graphs of the following situations be discrete or continuous? | or 3/12/
 - b) the number of ice cream cones bought at the snack shop

Discrete ... cannot have half a cone.

c) the length of a snake

Continuous... can have decimals with length.

ex. 13.24 in. long.

5. Identify the y-intercept and slope of the following graph. Then write an equation in slope-

intercept form.

6. Identify the slope and

y-intercept

of the following equations.

a)
$$y = 3x + 5$$

 $m > 3$
 $b = 5$

b)
$$y = \frac{1}{2}x - 3$$

 $m = \frac{1}{2}$

6 = -3

c)
$$y = 8$$
 $y = 0x + 8$
 $b = 8$

7. Graph the following equations.

a)
$$y = 2x - 5$$

b)
$$y = \frac{1}{2}x + 1$$

c.
$$y-3=4(x+1)$$
 Point-slape

8. Graph the following equation by finding the x and y intercepts.

$$6x - 3y = 12$$

- X, Y,
- 9. A line passes through the points (4, 1) and (2, -5). Write the equation of the line in point-slope pick a point: (4,1)

form. Then rewrite into slope-intercept form.
$$\frac{-5 - 1}{2 - 4} = \frac{-6}{-2} = 3$$

$$y-1=3(x-4) \text{ point-slope}$$

$$y-1=3x-12$$

$$+1$$

$$y=3x-11 \text{ Slope-intercept}$$

Write an equation that represents the problem below.

10. You have 310 saved texts on your phone. You delete 3 per minute. Write a linear function that models the number of texts after x minutes.

a.) equation
$$f(m) = -3m + 310$$

b.) How many texts will you have left after 20 minutes?

$$= -3(20) + 310$$

$$= -60 + 310 = * 250 + ex+5$$

11. Adult movie tickets are \$10 and student movie tickets are \$8. Write a standard equation relating the number of adults and students that can go to the movie for \$40.

a.) equation
$$10A + 85 = 40$$

b.) Do you have enough money to take 3 adults and 2 students? Why or why not ___