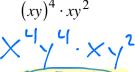
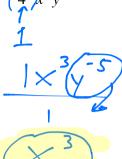
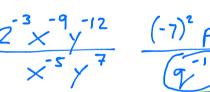

Chapter 8 Review


Simplify the following. Final answer should only have positive exponents.


 $x^3 \cdot 3^2 \cdot x \cdot 3$


 $(xy)^4 \cdot xy^2$

7.
$$\frac{\left(2x^3y^4\right)^{-3}}{x^{-5}y^7}$$
 8. $\left(\frac{-7p^3}{q^{-5}}\right)^2$

Tell what number belongs in the box to complete each equation.

(a) Is this function exponential growth or decay? Why?

(b) What is the initial amount? Why?

$$64$$
. If $x = 0$,
then $(\frac{1}{2})^{\circ} = 1$. So $64 \cdot 1 = 64$

(c) What does y equal when x = 3?

14. You buy 4 pet mice from the pet store.

The number of mice triples every month.

(a) Write a function for the number of mice after so many months. $\times =$ the number of months

(b) How many mice will you have after one year (12 months)?

$$f(12) = 4(3)^{12}$$

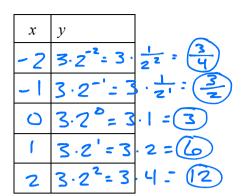
= 2,125,764 mice

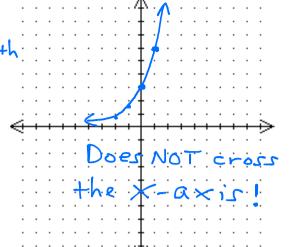
- wer the around 13. Given the function $y = 100(1.05)^x$, answer the following questions.
 - (a) Is this function exponential growth or decay? Why?

 Growth. The base is greater than 1.
 - (b) What is the initial amount? Why?

 100. If x=0, then $(1.05)^0 = 1$.

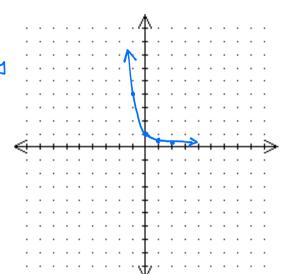
 So $100 \cdot 1 \cdot 100$.


 (c) What does y equal when x = 3?
 - (c) What does y equal when x = 3? $V = 100 (1.05)^{3}$


16.

- You buy a car for \$40,000 and it depreciates in value by 15% a year.
- (a) Write a function for the amount of money your car is worth after so many years.

(b) How much is your car worth after 3 years?


17. Fill in the table below for the function $y = 3(2)^x$, then graph it on the right.

18. Fill in the table below for the function $y = \left(\frac{1}{4}\right)^x$, then graph it on the right.

х	v	
	11\-2 14	12 (1)
-2	(4) -(-	1)2=16
-1	(4)-1 = (4	·)'= 4
0	(4) = (1))
1	(=)'=(-4	
2	(4)2=1	$\frac{1}{2} = \left(\frac{1}{16}\right)$
	1	

Chapter 7 Review over solving systems of equations.

Solve each system of equations with substitution or elimination. Graph paper is provided if needed.

19.
$$y = 5x - 3$$

 $y = 3x + 1$

$$y \neq 3x + 1 = 5x - 3$$

$$-3x - 3x$$

$$1 = 2x - 3$$

$$+3 + 3$$

$$\frac{4}{2} = \frac{2x}{2}$$

$$\frac{7}{2} = \frac{2x}{2}$$

$$20. \frac{(2x+3y=10) \pm 5}{-10x-y=6}$$

$$10x+15y=50$$

$$-10x-y=6$$

$$14y=50$$

$$2x+3(4)=70$$

$$2x+3(4)=70$$

$$2x+3(4)=70$$

$$2x=-2$$

$$2x=-2$$

$$2x + 2y = 0$$

$$2x + 2(-6x - 10) = 0$$

$$2x - 12x - 20 = 0$$

$$-10x - 20 = 0$$

$$-10x = \frac{20}{-10}$$

$$x = -2$$

$$y = -6(-2) - 10$$

$$12 - 10$$