Chapter 7 Review

Sections 7.1-7.4 Solving Systems of Equations

\#1

Graph and check to solve the linear

$$
\begin{aligned}
& y=\frac{-1}{1}+6 \text { begin } \\
& \begin{array}{c}
\text { move } \\
\text { uptight } \\
\text { nigh }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 2=-(4)+6 \\
& 2=2 \\
& 2=2(4)-6 \\
& 2=8-6 \\
& 2=2
\end{aligned}
$$

\#2

Graph and check to solve the linear

 system.$$
\begin{aligned}
& \begin{array}{l}
\text { UpI } \\
\text { Right } 2 \\
y
\end{array}=(-4,3) \\
& \text { Down ' } y \\
& \text { Right } 2 y=(-1 / 2 x+1 \\
& \text { CHECK: } \\
& 3=\frac{1}{2}(-4)+5 \\
& 3=-2+5 \\
& 3=3 \\
& 3=-\frac{1}{2}(-4)+1 \\
& 3=2+1 \\
& 3=3
\end{aligned}
$$

\#3

Use the substitution method to solve the linear system.

$$
\begin{aligned}
& 4 x+y=26 \\
& y=x-4 \\
& y=(6)-4 \\
& y=2
\end{aligned}
$$

$$
\begin{array}{r}
4 x+(x-4)=26 \\
4 x+x-4=26 \\
5 x-4=26 \\
\hline+4
\end{array}
$$

$$
4(6)+(2)=26
$$

$$
24+2
$$

$$
26=260
$$

$$
(2)=(6)-4
$$

$$
2=2
$$

\#4

Use the substitution method to solve the linear system.

$$
\begin{array}{ccc}
x=9-3 y & 4(9-3 y)-2 y=-6 & 4(0)-2(3)=-6 \\
4 x-2 y=-6 & 36-12 y-2 y=-6 & 0-6=-6 \\
x=9-3(3) & -36-14 y=-6 & -6=-6 \\
x=9-9 & \frac{-14 y}{-14}=\frac{-42}{-42} & 0=9-3(3) \\
x=0 & y=3 & 0=9-9
\end{array}
$$

\#5
Use the substitution method to solve the linear system.

$$
\begin{aligned}
& 3 y-24=x \\
& 5 x+8 y=-5 \\
& x=3(5)-24 \\
& x=15-24 \\
& x=-9
\end{aligned}
$$

$$
\begin{gathered}
5(3 y-24)+8 y=-5 \\
15 y-120+8 y=-5 \\
23 y+120=-5 \\
+1200 \\
\frac{23 y}{23}=\frac{115}{23}
\end{gathered}
$$

$$
\begin{gathered}
3(5)-24=(-9) \\
15-24=-92 \\
-9= \\
5(-9)+8(5)=-5 \\
-45+40 \\
-5=-5
\end{gathered}
$$

\#6

Use the substitution method to solve the linear system.

$$
(4,2)
$$

$$
\begin{array}{lcc}
y=2 x-6 & 2 x-3(2 x-6)=2 & (2)=2(4)-6 \\
2 x-3 y=2 & 2 x-6 x+18=2 & =8-6 \\
y=2(4)-6 & -4 x-18=18 & 2=2 \\
y=8-6 & \frac{-4 x}{-4}=\frac{-16}{-4} & 2(4)-3(2)=2 \\
y=2 & x=4 & 2-6=2
\end{array}
$$

Use elimination to solve the linear system. $(3,1)$

$$
\begin{array}{rl}
3 x+y=10 \rightarrow & 3 x+y=10 \\
x+5 y=8 \rightarrow-15 y=-24 \\
-3 & -3 x+-14 y \\
x+5(1)=8 & \frac{-14}{-14}=\frac{14}{-14} \\
x-5=8 & y=1
\end{array}
$$

$$
3(3)+(1)=10
$$

$$
9+1
$$

$$
10=10
$$

$$
(3)+5(1)=8
$$

$$
\begin{array}{r}
3+5 \\
8
\end{array}=8
$$

\#8

Use elimination to solve the linear system. (10, 2)

$$
\begin{aligned}
& +\begin{aligned}
& 4 x-30 y=-20 \\
&-4 x+5 y=-30 \\
&-25 y=\frac{-50}{-25} \\
& \hline-25 x+5(2)=-30 \\
& y=2 \\
& \begin{array}{ll}
-4 x+10 & -130 \\
\hline-4 x & \frac{-40}{-4}
\end{array}
\end{aligned} \\
& 4(10)-30(2)=-20 \\
& 40-60 \\
& -20=-20 \\
& -4(10)+5(2)=-30 \\
& -40+10=-30 \\
& -30=-30 \\
& x=10
\end{aligned}
$$

\#9
Tough
Use elimination to solve the linear system. $\quad(-2,5)$

$$
\begin{aligned}
& 3 x+3(5)=9 \\
& \begin{aligned}
3 x+15 & =9 \\
-15 & -15
\end{aligned} \\
& y=5
\end{aligned}
$$

Check:

$$
\begin{gathered}
5(-2)+4(5)=10 \\
-10 \\
10 \\
10 \\
3(-2)+3(5)=9 \\
-6 \\
-15 \\
9=9
\end{gathered}
$$

\#10

In early spring, you buy 6 potted tomato plants for your garden. The 8-inch potted plants sell for $\$ 5$ and the 10 -inch potted plants sell for $\$ 8$. If you spend $\$ 36$, how many of each size are you buying? $x=8$ in. plants $\quad y=210$-inns

\#11

A store sold 28 pairs of cross-trainer shoes for a total of $\$ 2220$. Nike shoes sold for $\$ 70$ per pair and Adidas shoes sold for $\$ 90$ per pair. How many of , each style were sold?

$$
N=15
$$

$$
\begin{aligned}
& N=\text { Nike } \\
& A=A \text { didas } \\
& -70 A=-1960 \\
& +90 A=2220 \\
& \frac{20 A}{20}=\frac{260}{20} \\
& A=13
\end{aligned}
$$

15 Nike shoes

\#12

Solve the linear system and tell how many solutions the linear system has.

$\frac{$	$2 x-3 y=1$
$-2 x+3 y=1$	}{$0 \neq 2 \text { NUT TRUE }$}

No Solution
\#13

Solve the linear system and tell how many solutions the linear system has.

$$
\begin{aligned}
& 3 x+y^{3}=-1^{3} \longrightarrow 9 x+3 y=-3 \\
& -9 x-3 y=3 \longrightarrow-9 x-3 y=3 \\
& 0=0 \\
& \text { truE }
\end{aligned}
$$

\#14

Describe what the lines would look like if there is no solution to the system of equations.
No Solution means the lines NEVER touch.
Parallel lines. Same slopes.

NO TOUCH = NO SOLUTiON
\#15

Describe what the lines would look like if there are infinitely many solutions to the system of equations.
Same lines intersect everywhere

Is the point (-4,-3) a solution to the system?
No... $(-4,-3)$ is only on one line. It must be on BOTH lines to be a solution.

$$
\begin{array}{ll}
8 x-y=-29 & 8(-4)-(-3)=-29 \\
-9 x-3 y=26 & -32+3 \\
l & -29=-29
\end{array}
$$

$$
\begin{gathered}
-9(-4)-3(-3)=26 \\
36+9 \\
45 \neq 26 \\
\end{gathered}
$$

