Geometry Chapter 8, 10 Cumulative Review
yum e Key
3. Find the measure of each interior angle of a regular 16-gon.

$$
\frac{(16-2) 180^{\circ}}{16}=\frac{(14) 180^{\circ}}{16}=\frac{2520^{\circ}}{16}=157.5^{\circ}
$$

4. Find the measure of each exterior angle of a regular nonagon. $\rightarrow 9$ sides

$$
\frac{360^{\circ}}{9}=40^{\circ}
$$

5. Find the slope of each line. Classify each pair of lines as either parallel, perpendicular, or neither parallel nor perpendicular.
-Line 1: $(-3,-1)$ and $(3,3)$

- Line 2: $(-2,2)$ and $(0,-1)$
- Line 3: $(0,4)$ and $(2,1)$
- Line 4: $(-3,-4)$ and $(1,-1)$

Slope of line $I=\frac{3--1}{3-3}=\frac{4}{6}=\frac{2}{3}$
Slope of line $2=\frac{-1-2}{0-2}=\frac{-3}{2}$
slope of line $3=\frac{1-4}{2-0}=\frac{-3}{2}$
slope of line $4=\frac{-1--4}{1--3}=\frac{3}{4}$
line 1 and line 2 are perpendicular line 2 and line 3 are parallel line 1 and line 3 are perpendicular line 2 and line 4 are neither line 1 and line 4 are neither line 3 and line 4 are neither

6. Solve for x in the diagram. $\begin{array}{r}(5 x+10)^{\circ} \text { Sum of interior angles in a pentagon: }\end{array}$

7. Solve for the variables in the diagram.
a.

$8 y-11=4 y+9 \leftarrow$ (op sides \cong in a parallelogram)
$4 y=20$
$y=5$$\quad \begin{aligned} \text { (consecutive L's suppl.) } \longrightarrow 5 x-7+4 x+16 & =180 \\ 9 x+9 & =180 \\ 9 x & =171 \\ x & =19\end{aligned}$
b.

$5 y=y+116<$ alt. int L 's \cong
$\begin{aligned} 4 y & =116 \\ y & =29\end{aligned}$
8. Determine the most specific classification that can be used for the given quadrilateral based only upon the markings.
a.

d.

isosceles trapezoid
(one pair of parallel sills, legs are congruent)
9. Solve for the variables in the diagrams.
a. rectangle, so diagonals bisect and are congruent
 (one pair of parallel sides, legs are cong ruent)
b.

rectangle (because of the right angle
e.
 and the parallel lives all the angles are right L's)
c.

rhombus (opp sides II makes it a parallelogram and the f. perpendicular diagonals square (perpendicular
diagonals make it a rhombus
and congruent diagonals
make it a rectangle,
so it is a square)
b. trapezoid, so consecutive angles between

10. Graph the four points, then determine the most specific classification for the quadrilateral. Explain your reasoning.
a. $\quad A=(-4,1), B=(-1,3), C=(3,-3), D=(0,-5)$
 Slope $\overline{A B}=\frac{2}{3}$
Slope $\overline{B C}=\frac{-6}{4}=\frac{-3}{2}$ Slope $C D=\frac{-2}{-3}=\frac{2}{3}$ slope $\overline{A D}=\frac{6}{-4}=-\frac{3}{2}$ length $\overline{A B}: 2^{2}+3^{2}=c^{2}$ $4+9=c^{2}$ length $\overline{B C}: \begin{aligned} & \sqrt{13}=c \\ & 4^{2}+(-6)^{2}=c^{2}\end{aligned}$
$=16=36$ $16+36=c^{2}$
$2 \sqrt{13}=\sqrt{4 \cdot 13}=\sqrt{52}=c$

2), $\mathrm{H}=(4,4)$ slope $\overline{E H}=\frac{1}{6}$ slope $\overline{H G}=\frac{-6}{-3}=2$
Slope $\overline{F G}=\frac{-1}{-6}=\frac{1}{6}$
slope $\overline{F E}=\frac{-6}{3}=2^{6}$
length $E H: 1^{3}+6^{2}=c^{2}$
$\begin{aligned} 1+36 & =c^{2} \\ \sqrt{37} & =c\end{aligned}$
length $\overline{C D}=\sqrt{13}$
length $\overline{A D}=2 \sqrt{13}$

Since slopes are opposite reciprocals the angles are right angles so it is a rectangle. Since the sides are not all the same length it is not a rhombus nor a square. Thus it is a rectangle.
since opp sides have the same slope
they are parallel making it a length $\overline{F G}=\sqrt{37}$
they are parallel morale logan. No slopes ane opp reciprocals length $\overline{F E}=3 \sqrt{5}$
so there are noright angles and it is no a rectangle or square.
since not all the sides ane the same length it is not a rhombus.
Thus it is a parallelogram.
11. Determine if $\overline{C D}$ is tangent to $\odot A$. Explain your reasoning.

$61^{2} \square 11^{2}+60^{2}$
$3721 \square 121+3600$
$3721 \square 3721$
yes $\overline{C D}$ is tangent to $O A$ because $\angle D$ is a right angle
12. Determine the radius of $\odot B$ if $\overline{S L}$ is tangent.

13. Determine the following measures of $\odot C$:
a. $\quad m \widehat{R Q}=$ \qquad $180^{\circ}-153^{\circ}=27^{\circ}$
b. $\quad m \widehat{M N Q}=180^{\circ}$
c. $\quad m \widehat{R M Q}=333^{\circ}$ $360^{\circ}-27^{\circ}=333^{\circ}$

14. In $\odot A C \overline{C D} \cong \overline{H G}$ FG=10, $A F=2 x, A E=8$, and $C D=6 x-4$. Use this information to find the following values:
a. $x=4$
b. $\quad A F=$ \qquad
c. $H G=20$

15. Write an equation and solve for x. Explain your reasoning in setting up the equation.

16. Determine the following measures in $\odot A: \quad m \widehat{B D}=134^{\circ} \quad m \widehat{C D}=92^{\circ}$

For questions 17-20 find the measure of each angle or arc.
17.
a. $m \angle E C B=29^{\circ}$

$$
58^{\circ} \div 2=29^{\circ}
$$

b. $\quad m \angle C E D=35^{\circ} \quad 70^{\circ} \div 2=35^{\circ}$
c. $m \widehat{C D}=70^{\circ} \quad 35^{\circ} \cdot 2=70^{\circ}$

$$
\text { angle }=\frac{\operatorname{arc}+\operatorname{arc}}{2}
$$

$$
\begin{aligned}
& x^{\circ}=\frac{74^{\circ}+36^{\circ}}{2} \\
& x^{\circ}=\frac{110^{\circ}}{2} \\
& x^{\circ}=55^{\circ}
\end{aligned}
$$

18. a. $m \angle C F D=55^{\circ}$
b. $\quad m \angle E F C=125^{\circ} \quad 180^{\circ}-55^{\circ}=125^{\circ}$

19. $m \widehat{B F}=50^{\circ}$
b. $\quad m \widehat{E B}=156^{\circ} \quad 78^{\circ} \cdot 2=156^{\circ}$

$$
\text { angle }=\frac{\begin{array}{c}
b: g-\operatorname{small}_{\text {arc }}
\end{array}}{2}
$$

$$
\begin{aligned}
\frac{29^{\circ}}{1} & =\frac{108^{\circ}-x^{\circ}}{2} \\
58^{\circ} & =108^{\circ}-x^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& 58^{\circ}=108^{\circ} \\
&-58^{\circ}-58^{\circ} \\
& \hline 0^{\circ}=50^{\circ}-x^{\circ} \\
&+x^{\circ} \\
& x^{\circ}=50^{\circ}
\end{aligned}
$$

21. Solve for x .

$$
\begin{aligned}
3 \cdot x & =6.5 \\
\frac{3 x}{3} & =\frac{30}{3} \\
x & =10
\end{aligned}
$$

22. Solve for y.

$$
\begin{aligned}
\text { outside }(\text { whole }) & =\text { outside(whole) } \\
4(4+y) & =6(6+14) \\
16+4 y & =6(20) \\
\frac{16+4 y}{} & =120 \\
\frac{-16}{4 y} & =\frac{104}{4}
\end{aligned}
$$

23. Solve for x.

$$
\begin{aligned}
\text { outside (whole) } & =\text { outside(whole) } \\
6(6+x) & =9 \quad(9) \\
36+6 x & =81 \\
\frac{-36}{6(6 x} & =\frac{-35}{6} \\
x & =7.5
\end{aligned}
$$

Warmup
Solve for all variables
1)

2)

$$
\begin{aligned}
& \text { inside } \\
& \text { aude } \\
& \text { and } \\
& y^{\circ}=\frac{124^{\circ}+138^{\circ}}{2} \\
& y=131 \\
& y=180-131 \\
& x=49 \\
& x=
\end{aligned}
$$

$$
\begin{aligned}
& \text { outside big - Small }=\text { ar l } \\
& \text { ard }
\end{aligned}
$$

$$
\text { angle }=\frac{\operatorname{arc}}{2}
$$

$$
x
$$

$$
\begin{aligned}
& 42^{\circ}=x^{\circ}-32^{\circ} \\
& +32^{\circ} \quad+32^{\circ} \\
& 74=x
\end{aligned}
$$

