Determine the most specific name of the quadrilateral. Your choices are quadrilateral, parallelogram, rhombus, rectangle, square, trapezoid, isosceles trapezoid, and kite.
1.

3.

2.

$$
\begin{aligned}
& \text { rhombus } \\
& (4 \stackrel{\cong}{=} \text { sides }) \\
& \text { F if }
\end{aligned}
$$

4.

rectangle

Find the value of each variable in the square.
5.

$$
\begin{aligned}
& X=\frac{12}{6} \\
& Y=12 \\
& Z=12 \sqrt{2}=\sqrt{288} \approx 16.97
\end{aligned}
$$

$$
\begin{aligned}
& z^{2}=12^{2}+12^{2} \\
& z^{2}=144+144 \\
& z^{2}=288 \\
& z=\sqrt{288}=\sqrt{144} \sqrt{2}=12 \sqrt{2}
\end{aligned}
$$

Use the properties of the given quadrilateral to find the value of each the variable.
7. Below is a square.
8. Below is a rhombus.
9. Below is a trapezoid.
$\overline{A B}$ is the midsegment.

$\begin{aligned} & 9 x-20 \\ & 5 x-8=9 x-20\end{aligned} \quad 5(3)-8=-10 y+27$

$\begin{array}{rlrl}-5 x+20^{-5 x}+20 \\ \frac{12}{4} & =\frac{4 x}{4} & \frac{-27}{-10 y+27} \\ 3 & =x & \frac{-20}{-10} & =\frac{-10 y}{-10}\end{array}$
$\frac{-78}{102}=y \quad x=\frac{32}{2}$
$x=16$
$\mathrm{X}=3$
$\mathrm{Y}=2$
$2=y$
$x=\underline{26}$
$x=\ldots$
$\mathrm{Y}=\underline{1}$
$Y=\ldots$
10. Below is a rectangle.

$\begin{array}{rrr}90 & 63 & 180 \\ \frac{-63}{27} & \frac{163}{126} & \frac{-126}{54}\end{array}$

$$
\text { isosceles } \triangle B A E
$$

$\begin{array}{ll}m \angle C B E=\frac{27^{\circ}}{} & m \angle B A E=\frac{63^{\circ}}{54^{\circ}} \\ m \angle D A E= & \text { triangle angles } \\ & m \angle B E A=180^{\circ}=2\end{array}$
$A C=12 \quad C D=$
11. Below is a trapezoid

Use the given vertices to graph $A B C D$. Give the most specific classification for ABCD. Justify your answer by first calculating all necessary slopes, distances, and/or midpoints then explaining how those allow you to make your classification.
12. $A(2,0), B(2,3), C(4,5), D(7,5) \quad$ Name Isosceles Trapezoid

Work and Explanation:

$$
\left\{\begin{array}{l}
\text { slope } \overline{B C}=\frac{2}{2}=1 \\
\text { slope } \overline{A D}=\frac{5}{5}=1
\end{array}\right\} \overline{B C} \| \overline{A D}
$$

$$
\left.\begin{array}{l}
\text { slope } \overline{A B}=\frac{3}{0}=\text { undefined } \\
\text { slope } \overline{C D}=\frac{0}{3}=0
\end{array}\right\} \overline{A B} \nmid \overline{C D}
$$ distance $A B=3$ distance $C D=3$

$$
\frac{\left(A B^{2}=D^{2}+3^{2}\right)}{\overline{A B} \cong C D}\left(C D^{2}=3^{2}+D^{2}\right)
$$

since the bases are parallel and the legs are congruent, it is an isosceles trapezoid.
13. $A(-1,3), B(3,1), C(2,-1), D(0,0)$ Name trapezoid

Work and Explanation:

$$
\left.\left.\begin{array}{l}
\text { slope } \overline{A B}=\frac{2}{-4}=-\frac{1}{2} \\
\text { slope } \overline{C D}=\frac{1}{-2}
\end{array}\right\} \overline{A B} \| \overline{C D}\right\}
$$

since there is one pair of parallel sides

$$
\left.\begin{array}{l}
\text { slope } \overline{B C}=\frac{2}{1}=2 \\
\text { slope } \overline{A D}=\frac{3}{-1}=-3
\end{array}\right\} \overline{B C} \nmid \overline{A D} \quad\left\{\begin{array}{l}
\text { it is a trape } z \text { id }
\end{array}\right.
$$

Error Analysis:
14. Original Instructions: Classify the figure at the right giving the most specific name possible.

Sam's incorrect answer is show below. Explain why Sam's answer is incorrect, correctly identify the most specific name of the object, and explain the reasoning for your answer.

The object is a quadrilateral with
4 right angler, so it is a square.
Explain the error.
To be a square it must also have $4 \cong$ Sides, which it does not
Identify the correct name of the quadrilateral.

Rectangle
Explain your reasoning.

$$
\begin{aligned}
& \text { Explain your reasoning } \\
& \text { It hos } 4 \cong \text { (and not } 4 \cong \text { sides) }
\end{aligned}
$$

Given coordinates A, B, and C, choose the coordinates of point D so that ABCD forms a parallelogram. Explain why your chosen point for D will make a parallelogram. *You may want graph paper* (If used attach it to this sheet when you turn it in)
15. $A(-3,3), B(1,2) C(2,-1) D(-2,0)$ Explain: makes $\overline{A D}$ have the same length and slope as $\overline{B C}$
16. $A(5,3), B(1,2) C(2,-1) D(\ldots, \square)$ Explain: makes $\overline{A D}$ have the sune length and slope as $\overline{B C}$
17. $A(-3,3), B(1,2) C(4,0) D(\ldots, 1)$ Explain: makes $\overline{A D}$ have the same length and slope as $\overline{B C}$
18. $A(3,3), B(-3,2) C(2,-1) D(\quad, \quad)$ Explain: makes $\overline{A D}$ have the same length and slope as $\overline{B C}$

19. Find the value of x in the given pentagon

$x-6+2 x+4+5 x+8+8 x+12+3 x-10=540^{\circ}$

$$
19 x+8=540
$$

21. The measures of the exterior angles of a convex heptagon are $70^{\circ}, 8 x^{\circ}, 5 x^{\circ}, 55^{\circ}, 2 x^{\circ}, 6 x^{\circ}$, and 46^{6}.
22. Find the value of x in the given regular octagon.

$$
\begin{gathered}
19 x=532 \\
x \approx 28
\end{gathered}
$$ What is the measure of the exterior angles in order from smallest to largest?

$$
\begin{array}{rlrl}
70+8 x+5 x+55+2 x+6 x+46=360 & 2 x & \Rightarrow 18^{\circ} \\
21 x+171=360 & 5 x & \Rightarrow 45^{\circ} \\
21 x=189 & 6 x & \Rightarrow 54^{\circ} \\
x=9 & 8 x & \Rightarrow 72^{\circ}
\end{array}
$$

Given the sum of the interior angles of a convex polygon, classify the polygon by the number of sides.
22. 2160°

23. 2700°

24. 1080°

Given the measure of an interior angle of a regular polygon, find the number of sides.
25. 150°
26. 120°
27. 60°
\Rightarrow ext angle $=180^{\circ}-150^{\circ}=30^{\circ}$
\Rightarrow ext. angl le $=180^{\circ}-120^{\circ}=60^{\circ}$
\Rightarrow ext. angle $=180^{\circ}-60^{\circ}=120^{\circ}$

$$
\begin{array}{ll}
\frac{360^{\circ}}{n}=30^{\circ} \quad 360^{\circ}=30^{\circ} n \\
12=n
\end{array}
$$

$$
\frac{360^{\circ}}{n}=60^{\circ} \quad 360^{\circ}=60^{\circ} \mathrm{n}
$$

Find the value of each variable in the parallelogram.

Opp sides $\cong \quad 147=2 y-5$ (opp L's $\cong)$

$$
\frac{360^{\circ}}{n}=120^{\circ}
$$

$$
\begin{aligned}
& n 120^{\circ} n \quad 15 z \\
& 360^{\circ}=6 z+27(\text { opp sides } \cong) \\
& 9=27
\end{aligned}
$$

29.

$4 x+10=6 x$

$$
3 z=33 L
$$

$$
3 \mathrm{z}
$$

30.

(consecutive L 's) alt. int L 's

$$
x=30
$$

$$
\begin{aligned}
& X=30 \\
& Y=\frac{10}{30} \\
& Z=40
\end{aligned}
$$

31.

$$
\begin{aligned}
& X=\frac{10}{27} \\
& Y=\frac{27}{3} \\
& Z=\frac{3}{13 x=180 \text { (Consecutive } L^{\prime} \text { 's) }}
\end{aligned}
$$

$$
18 x=180
$$

$$
x=10
$$

$$
\begin{aligned}
& \mathrm{X}=\frac{2}{-6} \\
& \mathrm{Y}=\frac{-6}{3} \\
& \mathrm{Z}=-3
\end{aligned}
$$

$$
-6 x-7=2 x-23 \text { (opp sills } \cong)^{2 x-23} 3 y-8=6 y+10 \text { (diagonals bisect) }
$$

$$
16=8 x
$$

$$
-18=3 y
$$

$$
2=x
$$

$-6=4$

$$
2 z+6=4 z
$$ $6=2 z$

$3=z$
Is it possible to prove each quadrilateral is a parallelogram? Explain your answer. $3=z$
32.

yes, the diagonals bisect each other
33.

no, the 104° and 103° opp. angles are not \cong

$$
\begin{aligned}
& \text { angles in the } \triangle \text { all up to } 180^{\circ} \\
& 30^{\circ}+3 y+2 y+20^{\circ}+80^{\circ}=180^{\circ} \\
& 5 y+130=180 \quad z=40 \\
& 5 y=50 \quad y=10 \\
& z=2(10)+20
\end{aligned}
$$

