1. Determine if the three given sides form a Pythagorean Triple.
a. $\quad 5,12,13$
b. $6,11,14$
$13^{2} \square 5^{2}+12^{2}$
$169 \square 25+144$
169 目 169
Yes, Pythagorean Triple.
2. Find the area of the triangle.
c. $\quad 7,7 \sqrt{7}, 14$

No, $7 \sqrt{3}$ is not an integer.

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
A & =\left(\frac{1}{2}\right)(16)(15 \\
& =8 \cdot 15 \\
& =120 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
A=\left(\frac{1}{2}\right)(16)(15) \quad \begin{aligned}
& 17^{2}=x^{2}+8^{2} \\
& 289=x^{2}+84
\end{aligned}
$$

3. Determine if a triangle can be formed from the given side lengths. If a triangle can be formed, classify the triangle by its angles.
a.
$2+5>8$
$7>8$

Not a \triangle.
b.

13, 10, 16
c. $40,59,29$ $\begin{aligned} 10+13 & >16 \\ 23 & >16 \text { yes } \triangle .\end{aligned}$ $29+40>59$
$16^{2} \square 10^{2}+13^{2}$
$256 \square 106+169$ $256 \square^{269}$ $69>59$ Yes \triangle

$$
\text { Acute... } c^{2}<a^{2}+b^{2}
$$

$(59)^{2} \square(29)^{2}+(40)^{2}$
$3481 \square 841+1600$ 3481 [】 2441
Obtuse... $c^{2}>a^{2}+b^{2}$
4. Two side lengths of a triangle are 20 and 27. Use an inequality statement to describe the possible lengths of the third side.

5. Order the SIDES from shortest to longest. Explain your reasoning.

$$
\overline{A C}, \overline{A B}, \overline{B C}
$$

$$
\text { smallest } \not x \text { opposite shortest side }
$$

$$
180^{\circ}-\left(63^{\circ}+59^{\circ}\right)
$$ medium χ opposite medium side largest \nless opposite longest side

SOH-CAH-TOA
6. Solve for x and y. Give an exact answer and an approximate answer rounded to one decimal place.
a. $U_{\text {sing Trig }}$
$\frac{\cos 60^{\circ}}{1}=\frac{x}{6}$

$$
\frac{\sin 45^{\circ}}{1}=\frac{x}{10}
$$

$$
x=10\left(\sin 45^{\circ}\right)
$$

$$
\frac{\sin 60^{\circ}}{1}=\frac{y}{6}
$$

$$
x \approx 7.1
$$

$$
\begin{aligned}
& y=6(\sin \\
& y \approx 5.2
\end{aligned}
$$

b
b. $\frac{5 \sqrt{2}}{x} 7$. 7.1
4
4

$$
\frac{t \sqrt{2}}{\sqrt{2}}=\frac{10}{\sqrt{2}}
$$

$$
t=\frac{10}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{{ }^{5} 10 \sqrt{2}}{12}
$$

$t=5 \sqrt{2}$

$\stackrel{\text { d. }}{8}$

$$
\begin{aligned}
\frac{\tan 45^{\circ}}{1} & =\frac{x}{8} \\
x & =8\left(\tan 45^{\circ}\right) \\
x & =8 \\
\frac{\cos 45^{\circ}}{1} & =\frac{8}{y}
\end{aligned}
$$

$$
y=\frac{8}{\cos 45^{\circ}}
$$

SOH-CAH-TOA
$y \approx 11.3$
7. Solve the right triangle for all missing sides and angles. Find approximate answers rounded to one

8. A train is traveling up a grade with an angle of elevation of 2°. It travels 1 mile (5280 feet).
a. Draw a diagram to represent this situation.
b. What is the vertical change in feet? (Round to one decimal place)

$$
\frac{\sin \left(2^{\circ}\right)}{1}=\frac{x}{5280} \quad \begin{aligned}
& x=5280\left(\sin 2^{\circ}\right) \\
& x \approx 184.3 \mathrm{ft} .
\end{aligned}
$$

9. A submarine that is 300 m below the surface of the water locates a battleship on the surface. Sonar says that the straight line distance from the submarine to the battleship is 400 m .
a. Draw a diagram to represent this situation.

b. What is the horizontal distance from the battleship to the submarine? (Round to one decimal place)

$$
\begin{aligned}
300^{2}+x^{2} & =400^{2} \\
x^{2} & =400^{2}-300^{2} \\
\sqrt{x^{2}} & =\sqrt{70,000} \\
x & \approx 264.6 \text { meters }
\end{aligned}
$$

c. What is the angle of depression at the battleship? (Round to one decimal place)

$$
\begin{aligned}
\sin \theta & =\frac{300}{400} \quad \text { from the horizontal line downwards } \\
\theta & =\sin ^{-1}\left(\frac{300}{400}\right) \approx 48.6^{\circ}
\end{aligned}
$$

10. Use the picture at the right where $\overline{C D}$ and $\overline{A E}$ are medians of $\triangle A B C$.
a. Solve for x and y.

$$
\begin{array}{lll}
x=8 & \ldots & \text { half of } 16 \\
y=9 & \ldots & \text { midpoint }
\end{array}
$$

b. If $A E=30$, then determine $A F$ and $F E$.

$$
\begin{array}{ll}
F E=\frac{1}{3}(A E) & A F=2(F E) \\
F E=\frac{1}{3}(30) & A F=2(10) \\
F E=10 & A F=20
\end{array}
$$

11. Use the picture below where $\overline{A D}$ is the perpendicular bisector of $\overline{B C}$ to solve for x and y.

$$
\begin{aligned}
& y=15 \text {... } \cong \triangle \text { 's by SAS } \\
& \text { Also, any point on the } \\
& \\
& \perp \text { bisector is equidistant } \\
& \text { to the vertices. }
\end{aligned}
$$

12. Use the picture below where $\overline{D E}$ is a midsegment of $\triangle A B C$ to solve for x and y.

