1. Use the figure below to solve for x .
a.

$\begin{aligned} 2 x+3+51 & =4 x+8 \\ 2 x+54 & =4 x+8\end{aligned}$
$\begin{aligned} 54 & =2 x+8 \\ 46 & =2 x \\ 23 & =x\end{aligned}$

2. Describe the requirements for a triangle to be classified as acute, right, obtuse, or equiangular.
acute: all angles acute
right: one right angle, two acute angles
obtuse:. one ob torse angle, two acute angles
equiangular: all angles \cong
3. Describe the requirements for a triangle to be classified as scalene, isosceles, or equilateral.
scalene: no sides \cong
iso steles'. at least two sides \cong
equilateral : all sides \cong
4. Given: $\overline{B C} \cong \overline{A B}$
a. Solve for x .

$$
\begin{aligned}
7 x+5 & =10 x-7 \\
5 & =3 x-7 \\
12 & =3 x
\end{aligned} \text { 年 }
$$

b. Is $\triangle A B C$ equilateral? Explain your reasoning.

$$
\begin{aligned}
& 7(4)+5=33 \quad \text { Yes, all sides are } 33 \text { long } \\
& 8(4)+1=33 \\
& 10(4)-7=33
\end{aligned}
$$

5. If $\triangle B D G \cong \triangle K M F, B D=12$ feet, $m \angle D=37^{\circ}$, and $m \angle F=24^{\circ}$, which of the following statements is false?

c) $-m \angle B=119^{\circ}$

For questions 6-8, solve for each variable.
6.

$(4 x+10)^{\circ}$
7.

8.

$x-2+x-2+$
$3 y+27=180$
$3 y=153$
$y=51$
9. Given $\triangle L U V \cong \triangle M A T$, find the value of x and y .

$$
\begin{aligned}
3 x-1 & =20 \\
3 x & =21 \\
x & =7
\end{aligned}
$$

$$
52+56+6 y=180
$$

$$
108+6 y=180
$$

$$
6 y=72
$$

$$
y=12
$$

For questions 10-13, decide whether it is possible to prove the triangles are congruent.
If yes, mark any additional information required on the diagram, state the congruence relationship and a postulate or theorem as a reason the triangles are congruent.
If not, write "Not $\cong "$ and provide a reason why the triangles cannot be congruent.
10.
$\triangle A D B \cong \triangle C B D$ by $S A S$

12.

$$
\begin{array}{r}
\triangle A C R \cong \triangle T O R \text { by } A S A \\
\\
\text { or } A A S
\end{array}
$$

14. Given: $\overline{Z P} \cong \overline{W S}$

$$
\begin{aligned}
& \overline{L P} \cong \overline{R S} \\
& \overline{Z P} \| \overline{W S}
\end{aligned}
$$

Prove: $\triangle Z P L \cong \triangle W S R$

13.

15. Given: $\overline{\overline{A B}} \overline{A B} \cong \overline{C D}$

Prove: $\angle B \cong \angle D$

16. Given $F R A N K \sim V O T E D$, find the value of:
a.
$\frac{6.4}{4.8}=\frac{3.2}{x}$
$6.4 x=15.36$
b. $m \angle O$
153°
c. If $T E=4$ then $N A=$
$\frac{6.4}{4.8}=\frac{y}{4} \quad \begin{array}{ll}25.6 & =4.8 y \\ 5.3 & =y\end{array}$

17. The two triangles shown below are similar. Complete the similarity statement and explain why the triangles are similar.
$\triangle R P W \sim \triangle X L B$
you can use the Δ sum the orem
to determine that $m \angle R=61_{1}^{\circ}$ so
you $k n$ ow $L R \cong \angle X$ and $\angle W \cong \angle B$, So the Δ^{\prime} 's are similar by AA

18. Solve for a, m, and x in the figure.

$\frac{3}{x}=\frac{6}{4} \quad \frac{3}{a}=\frac{12}{5} \quad \frac{9}{m}=\frac{12}{5}$
$\begin{array}{lll}12=6 x & 15=12 a & 45=12 \mathrm{~m} \\ 2=x & 1.25=a & 3.75=\mathrm{m}\end{array}$
19. Determine if it is possible to prove the triangles are similar. If yes, state the postulate or theorem that can be used to prove the two triangles similar and explain how you know that postulate or theorem works. If the triangles cannot be shown to be similar, explain your reasoning.

c.

b.

20. Use the image at the right for the following:
a. Write a similarity statement

$$
\triangle F A R \sim \triangle F U N
$$

b. Explain why the triangles are similar
$L F \cong \angle F$ by reflexive

LARA \cong F NU by correspal in L's
$\Rightarrow \triangle{ }^{\prime}$ similar by $A A$
c. Determine the scale factor

$$
\text { Either } \frac{4}{7} \text { or } \frac{7}{4} \text { depending on which way you go }
$$

d. Solve for $A R$

$$
\frac{4}{7}=\frac{x}{9} \quad \begin{array}{ll}
36=7 x \\
5.14=x
\end{array}
$$

21. Construct the polygon $A=(-2,-3), B=(-1,2), C=(3,5)$, and $D=(3,-2)$. Perform the dilation of $A B C D \rightarrow E F G H$ from the origin with the scale factor of $5 / 3$.

$$
\begin{aligned}
& A \rightarrow(-2,-3) \cdot \frac{5}{3}=\left(\frac{-10}{3},-5\right)=E \\
& B \rightarrow(-1,2) \cdot \frac{5}{3}=\left(-\frac{5}{3}, \frac{10}{3}\right)=F \\
& C \rightarrow(3,5) \cdot \frac{5}{3}=\left(5, \frac{25}{3}\right)=G \\
& D \rightarrow(3,-2) \cdot \frac{5}{3}=\left(5,-\frac{10}{3}\right)=H
\end{aligned}
$$

