\qquad

1. A point on the \perp bisector is equidistant from the \qquad endpoints of the bisected \qquad segment .
2. a. Solve for x. Then determine $B C$ and $B A$.

$$
\begin{aligned}
6 x+11 & =11 x-9 \\
20 & =5 x
\end{aligned}
$$

$\mathrm{BC}=35$

$$
y=x
$$

$$
B C=6(4)+11=24+11=35
$$

$B A=35$

$$
B A=11(4)-9=44-9=35
$$

Db. Is point B on the perpendicular bisector? Explain. yes because $\overleftrightarrow{B D} \perp \overline{A C}$ and point E is the midpoint of $\overline{A C}$
3. Tell whether the information in the diagram allows you to conclude that C is on the perpendicular bisector of $\overline{A B}$. Explain.

$$
\text { it is be cause } C \text { is equidistant from } A \text { and } B
$$

4. A point on the angle bisector is equidistant from the \qquad Sides of the bisected \qquad angle .

For questions 5 and 6 determine if. $D A=D C$. Explain your reasoning.
5.

6.

no, while $\overrightarrow{B D}$ is an angle bisector, since there is no right angle at A nor C wed not know that $\overline{D A}$ and $\overline{D C}$ are the \perp distances from D to the sides

For questions $7-12$ decide if it is possible to determine x. If it is possible, explain your reasoning and determine the value of x. If it is not possible, explain your reasoning.

13. In $\triangle D E F$ below, points G, J, and K are midpoints.
$2 \cdot G K=E F$
a. $\overline{G J} \| \overline{D K}$ or $\overline{K F}$ or $\overline{D F}$
b. $\overline{E J} \cong \overline{J F} \cong \overline{G K}$
c. $\overline{D E} \| \overline{J k}$ -
$2(4 x-1)=5 x+4$
d. $\overline{G J} \cong \overline{\overline{D K}} \cong \overline{K F}$
$E J=G k=4(2)-1=7$
e. If $G K=4 x-1$ and $E F=5 x+4$, determine:
$x=$ \qquad $E J=\quad 7$ $E F=14$

14. Use the graph shown at the right.
a. Prove that $\overline{S T}$ is parallel to $\overline{P R}$.

Slope of $\overline{S T}$:
Slope of $\overline{P R}$:

Since slopes are equal, the lines are parallel
b. Prove that the length of $\overline{P R}$ is twice the length of $\overline{S T}$.

Length of $\overline{P R}$:
$(-4)^{2}+4^{2}=d^{2}$
$\begin{aligned} & \text { Length of } \overline{S T} \\ &(-2)^{2}+\dot{d}^{2} \\ & 4+4=d^{2} \\ & \sqrt{8}=d^{2}\end{aligned}$
$\begin{aligned} \sqrt{32} & =\frac{d^{2}}{d^{2}}\end{aligned}$
$5.66=d$
$2.83 \approx d \quad$ know $P R$ is twice the length of ST
c. Now that you have proven $\overline{S T} \| \overline{P R}$ and $P R=2 \cdot S T$, what type of segment is $S T$? What kind of points are points S and T for the triangle?

$\overline{S T}$ is a midsegment because S and T are midpoints

15. Point G is the point of intersection of the three medians of $\triangle A B C$. You are given $A D=8, A G=10$, and $C D=18$. Find the length of each segment.
a. $\quad B D=$ \qquad (D is a mid point)
b. $\quad A B=$ \qquad
c. $E G=$ \qquad (half of $A G=10$)
d. $\quad A E=15$
e. $\quad C G=-12\left(\frac{2}{3}\right.$ of $\left.C D\right)$
f. $D G=6$

16. $\overline{A E}$ and $\overline{C D}$ are medians of $\triangle A B C$. Find the value of x and y .

17. The angle bisectors of $\triangle A B C$ intersect at point D. If $B D=25$ and $B G=24$, find $F D$.

$E D=D G=F D$ because any point on an angle bisector is equidistant from the sides
and it is showing the \perp distance
So if I find $D G$, I find $F D$ too
using Pythagorean Theorem on $\triangle D G B$ to solve for $D G$:
$x^{2}+24^{2}=25^{2}$
$x^{2}+576=625$ $\int \begin{aligned} & x^{2}=49 \\ & x=7\end{aligned}$
18. The perpendicular bisectors of $\triangle A B C$ meet at point D. If $B D=7, E D=5$, and $F C=6$, find $D C$.

19. Given that $\overline{C D}$ is the perpendicular bisector of $\overline{A B}$ with $A B=16$ and $C D=15$ determine the following measures.
$m \angle A D C=\underline{90^{\circ}}$

$$
A D=8
$$

$$
\begin{aligned}
8^{2}+15^{2} & =x^{2} \\
64+225 & =x^{2} \\
\sqrt{289} & =\sqrt{x^{2}} \\
17 & =x
\end{aligned}
$$

$A C=$ \qquad

25. In the picture you are given that $\overline{A D} \cong \overline{B D}$ and $\angle A C E \cong \angle B C E$. Identify an example of each.

An example of a perpendicular bisector is

An example of an angle bisector is

An example of a median is

$$
\overline{C D}
$$

An example of an altitude is

$$
\overline{C F}
$$

