1. Use the given figure to answer the following questions.
 a. Name four points that are coplanar

 Example (more than one correct answer):
 \(A, C, D, H \)

 b. Name the intersection of plane \(KED \) and plane \(CAF \).
 \(\overline{CD} \)

 c. Name a plane containing point \(H \).
 \(\text{Plane } FGH \) (more than one correct answer)

2. Point \(O \) is between \(H \) and \(P \). \(HP = 7x - 2, OP = 4x + 6, OH = 25 \).
 Make a sketch of the given information. Write an equation and solve for \(x \). Determine \(HP \).

3. Use the given diagram to answer the following questions.
 a. What is the distance between points \(A \) and \(B \)?
 \(8^2 + 5^2 = d^2 \)
 \(64 + 25 = d^2 \)
 \(8.9 \) (rounded)

 b. What is the midpoint of \(AB \)?
 \(\left(\frac{2+3}{2}, \frac{1+2}{2} \right) \)
 \((1, 0.5) \)

4. In the figure, \(AF \) bisects \(\angle EAH \).
 If \(m\angle EAF = (6x - 7)^\circ \) and \(m\angle FAH = (3x + 29)^\circ \), then determine \(m\angle EAF \).

5. Use the given figure to answer the following questions.
 a. Name an angle supplementary with \(\angle PAL \).
 \(\angle OAP \)

 b. If \(m\angle KAM = 130^\circ \), then what does \(m\angle 2 \) equal? \(50^\circ \) (Linear Pair)

 c. Name a pair of vertical angles.
 \(\angle 2 \) & \(\angle 5 \) (more than one correct answer)

 d. Name a linear pair of angles.
 \(\angle PAN \) & \(\angle PAK \) (more than one correct answer)
6. Two sides of a regular octagon are represented by the expressions $5x + 4$ and $2x + 16$
 a. Make a sketch of a regular octagon including appropriate marking to indicate it is regular.

 ![Sketch of a regular octagon]

 b. Solve for the value of x.
 \[
 5x + 4 = 2x + 16 \quad \text{(All sides of a regular polygon are congruent)}
 \]
 \[
 3x = 12
 \]
 \[
 x = 4
 \]

 c. Determine the side length.
 \[
 5(4) + 4 = 24
 \]

7. Use the statement below to answer the following questions.
 A number is even if it is divisible by six.
 a. Rewrite the statement as a conditional statement in if-then form.
 \[
 \text{If a number is divisible by six, then it is even.}
 \]
 Is your statement true or false? If false, then provide a counterexample.

 b. Write the converse.
 \[
 \text{If a number is even, then it is divisible by six.}
 \]
 Is your statement true or false? If false, then provide a counterexample.

 c. Write the inverse.
 \[
 \text{If a number is not divisible by six, then it is not even.}
 \]
 Is your statement true or false? If false, then provide a counterexample.

 d. Write the contrapositive.
 \[
 \text{If a number is not even, then it is not divisible by six.}
 \]
 Is your statement true or false? If false, then provide a counterexample.

8. **If two angles are complementary, then the sum of the measures of the angles is 90°.**
 a. Could the statement above be written as a true biconditional? **Yes** or **No**
 \[
 \text{(Both original and converse are true)}
 \]

 b. If yes, then write the biconditional statement below. If no, then provide a counterexample.
 \[
 \text{Two angles are complementary if and only if the sum of the measures of the angles is 90°.}
 \]
9. Write a proof:
Given: \(m\angle JAK = 37^\circ, m\angle GAK = 92^\circ \)
Prove: \(\angle GAJ \) is an obtuse angle

\[
\begin{align*}
\angle JAK &= 37^\circ \quad \text{(Given)} \\
\angle GAK &= 92^\circ \quad \text{(Given)} \\
\angle JAK + \angle GAK &= \angle GAJ \quad \text{(Angle Addition Postulate)} \\
37^\circ + 92^\circ &= \angle GAJ \quad \text{(Substitution Property)} \\
129^\circ &= \angle GAJ \quad \text{(Simplify)} \\
\angle GAJ &\text{ is an obtuse angle} \quad \text{(Definition of an obtuse angle)} \\
(90^\circ < \angle GAJ < 180^\circ)
\end{align*}
\]

10. Write a proof:
Given: \(SE = LD \)
Prove: \(SL = ED \)

\[
\begin{align*}
SE &= LD \quad \text{(Given)} \\
SL + LE &= SE \quad \text{(Segment Addition Postulate)} \\
SL + LE &= LE + ED \quad \text{(Segment Addition Postulate)} \\
SL &= ED \quad \text{(Transitive Property)} \\
SL &= ED \quad \text{(Subtraction Property of Equality)}
\end{align*}
\]
11. Use the diagram at the right to answer the following questions:
 a. Name two lines that appear parallel to \overline{CH}
 Choose two: $\overrightarrow{EF}, \overrightarrow{EB}, \overrightarrow{AD}$
 b. Name two lines that appear perpendicular to \overline{CH}
 Choose two: $\overrightarrow{GC}, \overrightarrow{AC}, \overrightarrow{FH}, \overrightarrow{DH}, \overrightarrow{EC}, \overrightarrow{BH}$
 c. Name two lines that appear skew to \overline{CH}
 Choose two: $\overrightarrow{AB}, \overrightarrow{AE}, \overrightarrow{AF}, \overrightarrow{AG}, \overrightarrow{BD}, \overrightarrow{BE}, \overrightarrow{BG}, \overrightarrow{DE}, \overrightarrow{DF}, \overrightarrow{DG}$

12. Use the diagram below to solve for x and y.

13. Determine the value of x that would make $s \parallel r$. Explain your reasoning. Why does that value make the lines parallel?

14. If $m\angle 1 = (7x + 1)^\circ$ and $m\angle 3 = (6x - 2)^\circ$ determine $m\angle 4$.

15. If $\angle 2$ is a right angle, $m\angle 5 = 20^\circ$, and $m\angle 7 = 35^\circ$, then determine $m\angle 4$.

If the lines are going to be parallel, then the two angles I have marked $4x^\circ$ must be congruent as they are corresponding. The new $4x^\circ$ angle is a linear pair with the $(12x - 10)^\circ$ angle, so they must be supplementary.
16. Translate $\triangle ABC$
$(x, y) \rightarrow (x - 5, y - 2)$

$A' = (-4, 2)$

$B' = (-3, -1)$

$C' = (0, 0)$

17. Rotate $\triangle ABC$ 90°
clockwise about the origin

$A' = (1, 1)$

$B' = (3, 0)$

$C' = (4, 3)$

18. Draw the reflection of $\triangle ABC$ in the given line. List the coordinates of the vertices A', B', and C'.

a. y-axis

$A' = (-1, 3)$

$B' = (-2, 1)$

$C' = (-5, 2)$

b. $y = -1$

$A' = (-3, -4)$

$B' = (0, -1)$

$C' = (2, -3)$

c. $x = 2$

$A' = (5, 3)$

$B' = (3, -2)$

$C' = (2, 2)$

19. Given $\triangle DEF$ is reflected in line a followed by a
reflection in line b where $a \parallel b$.

a. If $FF'' = 36$ ft, then find the distance x
between lines a and b.

$$\frac{36 \text{ ft}}{a} = 18 \text{ ft} + x$$

b. Find the value of y.

$$\frac{y}{y} = 0.79$$

$$\frac{y}{4.12} = 3.16$$

c. Find $D'F'$.

4.12