Name Key

1. Find the next two numbers in the pattern. Then describe the pattern. 100, -50, 25, -12.5, ..., 6.25, -3.125

```
Start with 100, then divide previous number by -2
```

Each figure consists of triangles constructed from unit segments connecting each point. 2. Fill out the rest of the chart a.

Figure	1	2	3	4	5	6	7	8/
Picture	1/13 2	+ 3		19 2d 7(2) 32 32 35 36 36 26		+3	+3	
Number of Unit Segments	3	9 10	18	7 30	5 45 +1	63-	84+3	108
Number of Unit Triangles	1 +	5 4 +	9 +	16 +	9 25 +1	36+13	49+15	64

Describe the pattern for the number of unit segments. b. Start with 3. Start by adding 6 to previous number. Add 3 to the amount added each time.

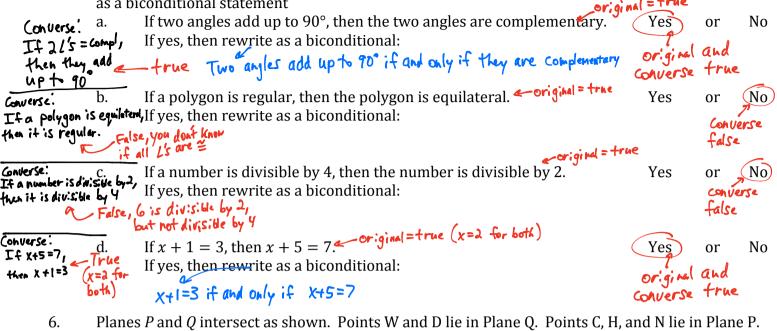
Describe the pattern for the number of unit triangles c. Start with 1. Start by adding 3 to previous number. Add 2 to the amount added each time. d.

- \bigcup 64 Use the following conditional statement: An angle is obtuse if it measures 130°. 3.
 - Rewrite the statement in if-then form. (Hint: the hypothesis already follows "if") a. If an angle measures 130°, then it is obtuse.
 - Underline the hypothesis (condition) and circle the conclusion in your statement above. b.
 - Is your if-then statement true or false? If false, then provide a counterexample. C. True
- Use the following if then statement: If *x* equals 3, then *x* is greater than 2. 4.
 - Write the converse statement. a.

If x is greater than 2, then X equals 3.

Is the converse true or false? If false, then provide a counterexample. False. X could be 4, which is greater than 2, but not equal to 3.

Write the inverse statement. b. If x is not equal to 3, then x is not greater than 2.

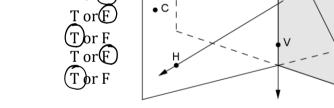

> Is the inverse true or false? If false, then provide a counterexample. False. X could be 4 which is not equal to 3, but is greater than 2.

Write the contrapositive statement. C.

```
If x is not greater than 2, then x is not equal to 3.
```

Is the contrapositive true or false? If false, then provide a counterexample. True

5. Determine if each could be rewritten as a valid biconditional statement. (Hint: Are both the original and converse true?) If it can be rewritten as a valid biconditional statement, then write it as a biconditional statement



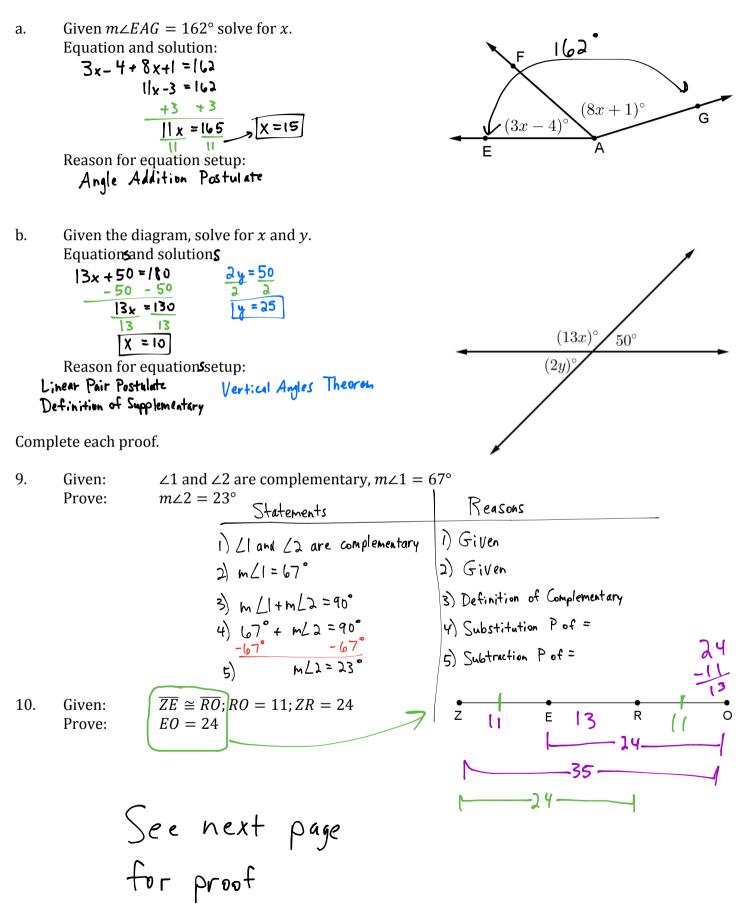
True or False a. *C*, *H*, and *D* are coplanar. (T) or F

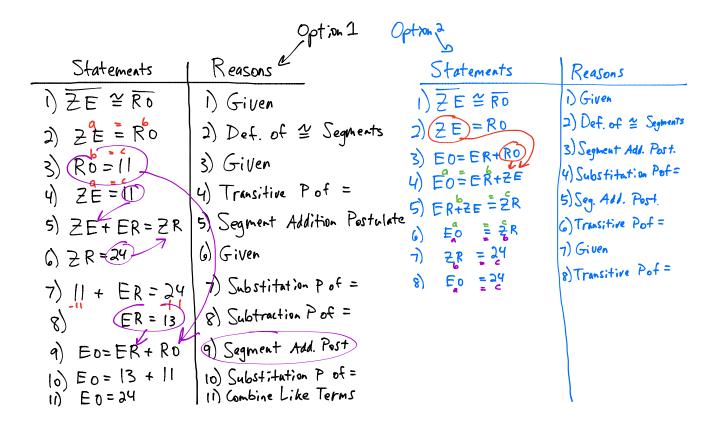
Tbr F

T or (F)

- a. *C*, *H*, and *D* are coplanar.
 b. The intersection of Planes *P* and *O* is *GV*.
- c. \overrightarrow{HN} is in Plane Q.
- d. \overrightarrow{WD} and \overrightarrow{HN} intersect.
- e. \overrightarrow{CN} exists.
- f. *V*, *G*, *N*, and *W* are coplanar.
- g. \overrightarrow{HN} and \overrightarrow{GV} intersect.

G


W


D

7. Solve the equation and state a reason for each step.

State	ment	Reason
1.	6x - 4(x - 3) = 18 - x	1. Given
ג .	6x - 4x + 12 = 18 - x	2. Distributive Property
3.	$9^{X} + 1^{J} = 18 - X$	3. Simplify
	+x $+x$	
Ч.	3x + 12 = 18	4. Add:tion Property of Equality
	-12 -12	
5.	3x = 6	5. Subtraction Property of Equality
	3 3	
6.	χ = 2	6. Division Property of Equality
		6. DIVISION Property of Equality

8. Write an equation and solve for the indicated value. Explain your reasoning including any theorems, definitions, or postulates used in **WRITING** the equations.

