1. Find the next two numbers in the pattern. Then describe the pattern.

$$
100,-50,25,-12.5, \ldots, 6.25,-3.125
$$

$$
\text { Start with } 100 \text {, then divide previous number by }-2
$$

2. Each figure consists of triangles constructed from unit segments connecting each point.
a. Fill out the rest of the chart

b. Describe the pattern for the number of unit segments.

Start with 3. Start by adding 6 to previous number. Add 3 to the amount added each time.
c. Describe the pattern for the number of unit triangles

Start with 1. Start by adding 3 to previous number. Add 2 to the amount added each time.
d. Find the number of unit segments and unit triangles in the $8^{\text {th }}$ figure.
3. Use the following conditional statement: An angle is obtuse if it measures 130°.
a. Rewrite the statement in if-then form. (Hint: the hypothesis already follows "if")

$$
\text { If an angle measures } 130^{\circ} \text {, then it is obtuse. }
$$

b. Underline the hypothesis (condition) and circle the conclusion in your statement above.
c. Is your if-then statement true or false? If false, then provide a counterexample.

True

4. Use the following if then statement: If x equals 3 , then x is greater than 2 .
a. Write the converse statement.

If x is greater than 2 , then x equals 3 .
Is the converse true or false? If false, then provide a counterexample.
False. X could be 4 , which is greater than 2 , but not equal to 3 .
b. Write the inverse statement.

If x is not equal to 3 , then x is not greater than 2.
Is the inverse true or false? If false, then provide a counterexample.
False. X could be 4 which is not equal to 3 , but is greater than 2.
c. Write the contrapositive statement.

If x is not greater than 2 , then x is not equal to 3 .
Is the contrapositive true or false? If false, then provide a counterexample.
True
5. Determine if each could be rewritten as a valid biconditional statement. (Hint: Are both the original and converse true?) If it can be rewritten as a valid biconditional statement, then write it as a biconditional statement
$\begin{array}{lll} \\ \text { Converse'. a. If two angles add up to } 90^{\circ} \text {, then the two angles are complementary. Yes } & \text { Yes } \\ \text { If } 2 l^{\prime} s=\text { comp } & \text { If yes, then rewrite as a biconditional: } & \text { or }\end{array}$ If $2 L^{\prime} s=$ comp' If yes, then rewrite as a biconditional
then they add true. Two angles add up to 90° if and only if they are complementary
up to 90° converse: \quad b. If a polygon is regular, then the polygon is equilateral. \leftarrow original = true
If a polygon is equilatern, If yes, then rewrite as a biconditional:
then it is regular. False, you dort know
e-original = true

Converse: ${ }_{2}$ C. ${ }^{\text {C. }}$ by 2 , If a number is divisible by 4 , then the number is divisible by 2 .
If a number is divisiside by 2 , If yes, then rewrite as a biconditional:
then it is diuc:sible by 4
Yes or No

Yes
a. False, 6 is divisible by ${ }^{2}$,

If $x+1=3$, then $x+5=7 \lessdot$ original $=$ true $(x=2$ for both $)$

Converse:

If yes, then rewrite as a biconditional:
$x+1=3$ if and only if $x+5=7$

6. Planes P and Q intersect as shown. Points W and D lie in Plane Q. Points C, H, and N lie in Plane P . True or False
a. C, H, and D are coplanar.

Tor F
b. The intersection of Planes P and Q is $\overleftrightarrow{G V}$.
c. $\overleftrightarrow{H N}$ is in Plane Q.
d. $\overleftrightarrow{W D}$ and $\overleftrightarrow{H N}$ intersect.
e. $\overleftrightarrow{C N}$ exists.
f. $\quad V, G, N$, and W are coplanar.
g. $\overleftrightarrow{H N}$ and $\overleftrightarrow{G V}$ intersect.

Tor

7. Solve the equation and state a reason for each step.

Statement
1.

$$
6 x-4(x-3)=18-x
$$

2. $6 x-4 x+12=18-x$
3. $2 x+12=18-x$
4. $\quad \frac{+x}{3 x+12}=18$
5. $\quad \frac{-12-12}{\frac{3 x}{3}=\frac{6}{3}}$
6.

$$
x=2
$$

1. Given
2. Distributive Property
3. Simplify
4. Addition Property of Equality
5. Subtraction Property of Equality
6. Write an equation and solve for the indicated value. Explain your reasoning including any theorems, definitions, or postulates used in WRITING the equations.
a. \quad Given $m \angle E A G=162^{\circ}$ solve for x.

Equation and solution:

$$
\begin{aligned}
3 x-4+8 x+1 & =162 \\
11 x-3 & =162 \\
+3 & +3 \\
\frac{11 x}{11} & =\frac{165}{11}, x=15
\end{aligned}
$$

Reason for equation setup:

Angle Addition Postulate
b. Given the diagram, solve for x and y.

Equationsand solutions

$$
\begin{aligned}
13 x+50 & =180 \\
-50 & -50 \\
\hline \frac{13 x}{13} & =\frac{130}{13} \\
x & =10
\end{aligned}
$$

$$
\frac{2 y}{2}=\frac{50}{2}
$$

Reason for equationssetup:
Linear Pair Postulate Vertical Angles Theorem Definition of Supplementary

Complete each proof.

9. Given: $\quad \angle 1$ and $\angle 2$ are complementary, $m \angle 1=67^{\circ}$

Prove:

10. Given:

Prove:

3) $m \angle 1+m \angle 2=90^{\circ}$
4) $67^{\circ}+m \angle 2=90^{\circ}$

See next page for proof

2) $Z{ }^{g} E R^{b} 0$
3) $R^{6}=i 1$
4) $Z E=$ (1)
5) $Z E+E R=Z R$
6) $Z R=24$
7) $11+E R=24$
8) $E R=13$
9) $E_{0}=E R+R_{0}$
10) $E_{0}=13+11$
11) $E 0=24$
8) Subtraction P of $=$
9) Segment Add. Post
10) Substitution P of $=$
11) Combine Like Terms

Option $\underbrace{2}_{5}$

Statements	Reasons
1) $\overline{Z E} \cong \overline{R D}$	1) Given

2) $Z E=R 0$
3) $E O=E R+$ TO
4) $E O=E R$ R $+Z E$
5) $E R+Z_{E}=\bar{E} R$
6) $\begin{aligned} E_{a}^{a} & \equiv z_{b}^{c} R\end{aligned}$
7) $Z_{6} R=24$
8) $\quad \begin{aligned} & E_{a}=24 \\ &=c\end{aligned}$
9) Def. of \cong Segments
10) Segment Add. Post.
11) Substitution P of $=$
12) Seq. Add. Post.
13) Transitive Pof $=$
14) Given
15) Transitive Pof $=$
