1. Find the next two numbers in the pattern. Then describe the pattern.
 100, −50, 25, −12.5, ...; 6, 25, −3.125
 Start with 100, then divide previous number by −2
2. Each figure consists of triangles constructed from unit segments connecting each point.
 a. Fill out the rest of the chart

<table>
<thead>
<tr>
<th>Figure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Unit Segments</td>
<td>3</td>
<td>9</td>
<td>18</td>
<td>30</td>
<td>45</td>
<td>63</td>
<td>84</td>
<td>108</td>
</tr>
<tr>
<td>Number of Unit Triangles</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
</tr>
</tbody>
</table>
 b. Describe the pattern for the number of unit segments.
 Start with 3. Start by adding 6 to previous number. Add 3 to the amount added each time.
 c. Describe the pattern for the number of unit triangles
 Start with 1. Start by adding 3 to previous number. Add 2 to the amount added each time.
 d. Find the number of unit segments and unit triangles in the 8th figure.

3. Use the following conditional statement: An angle is obtuse if it measures 130°.
 a. Rewrite the statement in if-then form. (Hint: the hypothesis already follows “if”)
 If an angle measures 130°, then it is obtuse.
 b. Underline the hypothesis (condition) and circle the conclusion in your statement above.
 c. Is your if-then statement true or false? If false, then provide a counterexample.
 True

4. Use the following if then statement: If x equals 3, then x is greater than 2.
 a. Write the converse statement.
 If x is greater than 2, then x equals 3.
 Is the converse true or false? If false, then provide a counterexample.
 False. x could be 4, which is greater than 2, but not equal to 3.
 b. Write the inverse statement.
 If x is not equal to 3, then x is not greater than 2.
 Is the inverse true or false? If false, then provide a counterexample.
 False. x could be 4 which is not equal to 3, but is greater than 2.
 c. Write the contrapositive statement.
 If x is not greater than 2, then x is not equal to 3.
 Is the contrapositive true or false? If false, then provide a counterexample.
 True
5. Determine if each could be rewritten as a valid biconditional statement. (Hint: Are both the original and converse true?) If it can be rewritten as a valid biconditional statement, then write it as a biconditional statement.

a. If two angles add up to 90°, then the two angles are complementary.
 If yes, then rewrite as a biconditional:
 \[\text{Two angles add up to 90° if and only if they are complementary.} \]
 Yes or No

b. If a polygon is regular, then the polygon is equilateral.
 If yes, then rewrite as a biconditional:
 False, you don’t know if all sides are equal.
 Yes or No

c. If a number is divisible by 4, then the number is divisible by 2.
 If yes, then rewrite as a biconditional:
 \[\text{If } x + 1 = 3, \text{ then } x + 5 = 7. \]
 Yes or No

6. Planes \(P \) and \(Q \) intersect as shown. Points \(W \) and \(D \) lie in Plane \(Q \). Points \(C, H, \) and \(N \) lie in Plane \(P \). True or False

a. \(C, H, \) and \(D \) are coplanar. True or False
b. The intersection of Planes \(P \) and \(Q \) is \(\overrightarrow{GV} \). True or False
c. \(\overline{HN} \) is in Plane \(Q \). True or False
d. \(\overline{WD} \) and \(\overline{HN} \) intersect. True or False
e. \(\overline{CN} \) exists. True or False
f. \(V, G, N, \) and \(W \) are coplanar. True or False
g. \(\overline{HN} \) and \(\overrightarrow{GV} \) intersect. True or False

7. Solve the equation and state a reason for each step.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (6x - 4(x - 3) = 18 - x)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (6x - 4x + 12 = 18 - x)</td>
<td>Distributive Property</td>
</tr>
<tr>
<td>3. (2x + 12 = 18 - x \</td>
<td></td>
</tr>
<tr>
<td>(+ x)</td>
<td>Simplify</td>
</tr>
<tr>
<td>(\frac{3x + 12}{12})</td>
<td>Addition Property of Equality</td>
</tr>
<tr>
<td>4. (\frac{3x = 6}{3})</td>
<td>Subtraction Property of Equality</td>
</tr>
<tr>
<td>5. (x = 2)</td>
<td>Division Property of Equality</td>
</tr>
</tbody>
</table>
8. Write an equation and solve for the indicated value. Explain your reasoning including any theorems, definitions, or postulates used in **WRITING** the equations.

a. Given \(m\angle EAG = 162^\circ \) solve for \(x \).
 Equation and solution:
 \[
 3x - 4 + 8x + 1 = 162 \\
 11x - 3 = 162 \\
 + 3 + 3 \\
 11x = 165 \\
 x = 15
 \]
 Reason for equation setup: \(\text{Angle Addition Postulate} \)

b. Given the diagram, solve for \(x \) and \(y \).
 Equations and solutions:
 \[
 13x + 50 = 180 \\
 -50 -50 \\
 13x = 130 \\
 \frac{13x}{13} = \frac{130}{13} \\
 x = 10
 \]
 \[
 2y = 50 \\
 \frac{2y}{2} = \frac{50}{2} \\
 y = 25
 \]
 Reason for equation setup: \(\text{Linear Pair Postulate} \), \(\text{Definition of Supplementary} \), \(\text{Vertical Angles Theorem} \)

Complete each proof.

9. Given: \(\angle 1 \) and \(\angle 2 \) are complementary, \(m\angle 1 = 67^\circ \)
 Prove: \(m\angle 2 = 23^\circ \)

 \[
 \begin{array}{|l|l|}
 \hline
 \text{Statements} & \text{Reasons} \\
 \hline
 1) \angle 1 \text{ and } \angle 2 \text{ are complementary} & 1) \text{Given} \\
 2) m\angle 1 = 67^\circ & 2) \text{Given} \\
 3) m\angle 1 + m\angle 2 = 90^\circ & 3) \text{Definition of Complementary} \\
 4) 67^\circ + m\angle 2 = 90^\circ & 4) \text{Substitution P of} = \\
 5) m\angle 2 = 23^\circ & 5) \text{Subtraction P of} = \\
 \hline
 \end{array}
 \]

10. Given: \(ZE \cong RO; RO = 11; ZR = 24 \)
 Prove: \(EO = 24 \)

 See next page for proof
Option 1

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\overline{ZE} \cong \overline{RO}$</td>
<td>1) Given</td>
</tr>
<tr>
<td>2. $\overline{ZE} = \overline{RO}$</td>
<td>2) Def. of \cong Segments</td>
</tr>
<tr>
<td>3. $\overline{RO} = 11$</td>
<td>3) Given</td>
</tr>
<tr>
<td>4. $\overline{ZE} = 11$</td>
<td>4) Transitive P of =</td>
</tr>
<tr>
<td>5. $\overline{ZE} + \overline{ER} = \overline{ZR}$</td>
<td>5) Segment Addition Postulate</td>
</tr>
<tr>
<td>6. $\overline{ZR} = 24$</td>
<td>6) Given</td>
</tr>
<tr>
<td>7. $11 + \overline{ER} = 24$</td>
<td>7) Substitution P of =</td>
</tr>
<tr>
<td>8. $\overline{ER} = 13$</td>
<td>8) Subtraction P of =</td>
</tr>
<tr>
<td>10. $E_0 = 13 + 11$</td>
<td>10) Substitution P of =</td>
</tr>
<tr>
<td>11. $E_0 = 24$</td>
<td>11) Combine Like Terms</td>
</tr>
</tbody>
</table>

Option 2

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\overline{ZE} \cong \overline{RO}$</td>
<td>1) Given</td>
</tr>
<tr>
<td>2. $\overline{ZE} = \overline{RO}$</td>
<td>2) Def. of \cong Segments</td>
</tr>
<tr>
<td>3. $E_0 = ER + RO$</td>
<td>3) Segment Addition Postulate</td>
</tr>
<tr>
<td>4. $E_0 = ER + ZE$</td>
<td>4) Substitution P of =</td>
</tr>
<tr>
<td>5. $ER + ZE = \overline{ZR}$</td>
<td>5) Segment Add. Post.</td>
</tr>
<tr>
<td>6. $E_0 = \overline{ZR}$</td>
<td>6) Given</td>
</tr>
<tr>
<td>7. $E_0 = 24$</td>
<td>7) Given</td>
</tr>
<tr>
<td>8. $E_0 = 24$</td>
<td>8) Transitive P of =</td>
</tr>
</tbody>
</table>