1. Use the given information to find x and $A B$ given line m is a bisector of $\overline{A B}$.

$$
\begin{aligned}
& x=\underline{5} \\
& \begin{aligned}
A C & =B C \\
12 x-8 & =10 x+2
\end{aligned} \\
& A B=104-52+52=104 \quad \begin{aligned}
\frac{-10 x-10 x}{2 x-8=2} \\
+8+8
\end{aligned} \quad>\frac{2 x}{2}=\frac{10}{2}
\end{aligned}
$$

2. Use the diagram at the right to answer each question.
a. Name a linear pair of angles.
b. Name an angle supplementary to $\angle A B C$.

c. Name a pair of vertical angles.

d. If $m \angle K B R=122^{\circ}$, then $m \angle R B A=58^{\circ}$

3. Make a sketch of a regular octagon. Use appropriate markings to show it is regular.

4. Determine if each of the following polygons are equilateral, equiangular, regular, or none of the above. Classify each by the number of sides.

d.

c. If D is the midpoint of $\overline{H K}$, what are the coordinates of K ?

$$
\left.\begin{array}{rl}
H & =\left(\begin{array}{ll}
-3 & -1
\end{array}\right) \\
D=\left(\begin{array}{ll}
1 & -1 \\
1 & -2
\end{array}\right) \\
& +4 \\
K & -1
\end{array}\right)
$$

6. Given the points $G=(3,7)$ and $M=(5,-9)$
a. Find the coordinates of the midpoint of $\overline{G M}$.

$$
\text { Midpoint }=\left(\frac{3+5}{2}, \frac{7+-9}{2}\right)=\left(\frac{8}{2}, \frac{-2}{2}\right)=(4,-1)
$$

c. If M is the midpoint of $\overline{G T} \overline{G T}$ find the coordinates of T.

$$
\begin{aligned}
& G=(3,7) \\
& M=\left(\begin{array}{l}
+2 \\
5,-9) \\
+2
\end{array}\right) \rightarrow T=(7,-25)
\end{aligned}
$$

7. Points O and R lie between C and E. Point O is between C and R.

Given $C E=12 x+4, O R=4 x+1, E R=6 x-7, O C=14$
b. Find GM.

$$
\begin{aligned}
& a^{2}+b^{2}=d^{2} \\
&(5-3)^{2}+(-9-7)^{2}=d^{2} \\
& 2^{2}+(-16)^{2}=d^{2} \\
& 4+256=d^{2} \\
& 260=d^{2} \\
& \sqrt{260}=d \\
& \prod 6.1 \approx d=G M
\end{aligned}
$$

a. Draw and label a diagram with the given information.

c. Determine $O E$.

$$
\begin{aligned}
& 14+4 x+1+6 x-7=12 x+4 \\
& 10 x+8=12 x+4 \\
&-10 x-10 x-4 \\
& 4=2 x \\
& 2=x
\end{aligned}
$$

d. Determine $C E$.

$$
C E=12(2)+4=28
$$

$$
\begin{aligned}
O E & =4(2)+1+6(2)-7 \\
& =9+5 \\
& =14
\end{aligned}
$$

e. Is point O the midpoint of $\overline{C E}$? Explain.

$$
\text { yes because } C O=14 \text { and } O E=14
$$

$$
\text { We know } \overline{C O} \cong \overline{O E} \text { so by the definition of a }
$$ midpoint we know O is the midpoint of $\overline{C E}$.

8. Use the diagram at the right to answer the following.
a. Name three collinear points. $R_{1} Q_{1} S$
b. Give two other names for $\overleftrightarrow{W Q} \cdot \overleftrightarrow{Q W}$, line g
c. Give another name for plane V. (moe then one correct) Plane RQT, Plane
d. Name a line in plane V. (moe then one correct) $\overleftrightarrow{R Q}$ or $\overleftrightarrow{Q S}$ or live f, etc.

d. Name a line not in plane V. $\overleftrightarrow{W Q}$ or $\overleftrightarrow{Q W}$
e. \quad Name the intersection of two drawn in lines. Q
f. Name a point that is noncoplanar with R, S, and T. W
g. Name two opposite rays. $\overrightarrow{Q R}$ and $\overrightarrow{Q S}$
9. Draw plane A. Draw three noncollinear points J, K, and Lin plane A. Draw $\overline{J K}$ and add a point M between J and K. Then draw $\overrightarrow{M L}$.

10. Use the diagram at the right to answer the following.
a. Name the intersection of plane ACH and plane FBD. $\overleftrightarrow{D H}$
b. Name two planes that intersect at $\overleftrightarrow{G F}$. Plane $G F B$ and Plane $G F H_{A}$
c. Name the intersection of $\overleftrightarrow{E B}$ and $\overleftrightarrow{G E} . E$
T. True or False: Points A, C, and F are coplanar.
e. Any 3 points are always coplanar, even if the plane isn't drawn) e. True or False: Plane ACE intersects plane DHB.

False (top of the box and bottom of the box are supposed to be parallel
11. Mike made an error solving this problem. His work is shown below.

Original Instructions: Point F is between G and M on $\overline{G M}$. Use the given information to determine the length of $\overline{F M}$. You are given: $G M=5 x-3 ; F G=8 ; F M=3 x+3$

$$
\begin{array}{cc}
5 x-3+3 x+3=8 & 3(1)+3 \\
8 x=8 & =3+3 \\
x=1 & F M=6
\end{array}
$$

a. Describe Mike's errors).

He added the wrong segments.
He did $5 x-3+3 x+3=8$ instead

$$
\text { of doing } 8+3 x+3=5 x-3
$$

b. Rework the problem correctly.

$$
\begin{aligned}
& G F+F M=G M \\
& 8+3 x+3=5 x-3
\end{aligned}
$$

$$
3 x+11=5 x-3
$$

$$
\frac{-3 x \quad-3 x}{11=2 x-3}
$$

$$
F M=3(7)+3
$$

$$
\begin{aligned}
& =21+3 \\
F M & =24
\end{aligned}
$$

$$
\frac{+3+3}{\frac{14}{2}}=\frac{2 x}{2}
$$

12. Venny made a mistake solving this problem. His work is shown below.

Original instructions: You are given that $\angle H C P$ and $\angle J F K$ are supplementary. What is $m \angle P C H$?

a. Describe Venny's errors).

He thought supplementary meant the angles add up to 90°.
Supplementary actually means
the angles add up to 180°.

$$
\begin{array}{rlr}
x+2+4 x+8 & =90 & 16+2 \\
5 x+10 & =90 \\
5 x & =80 & m \angle P C H=18^{\circ} \\
x & =16 &
\end{array}
$$

b. Rework the problem correctly.

$$
\begin{aligned}
m \angle H C P+m \angle J F K & =180^{\circ} \quad m \angle P C H=34+2 \\
X+2+4 x+8 & =180 \\
5 x+10 & =180 \\
\frac{-10}{\frac{5 x}{5}} & =\frac{-10}{5} \\
x & =34
\end{aligned}
$$

13. Use the diagram to the right for question 1 ?
a. \quad Find $m \angle d=32^{\circ}$
b. Find $m \angle c+m \angle b=58^{\circ}+90^{\circ}=148^{\circ}$
c. What term is used to describe $\angle d \& \angle c$?
complementary (also adjacent)
d. What term is used to describe $\angle a \& \angle d$?
vertical angles (also congruent)
14. In addition to the markings on the drawing, the following statements are given:
C, V, and G are collinear $\angle D V H$ and $\angle H V B$ are a linear pair
$\overrightarrow{V H}$ is an angle bisector of $\angle C V D$ $m \angle B V G=102^{\circ}$

b. $m \angle B V E=26^{\circ} \quad 3(9)-1=26$
c. $m \angle D V C=102^{\circ} 6(9)-3=51$

d. $m \angle D V F=104^{\circ} \quad 78+26$
15. Sally solved the following question incorrectly. Her work is shown below:

If $\overrightarrow{A D}$ is an angle bisector of $\angle B A C$, find the value of x . Then find $m \angle B A D$.

a. Describe the error Sally made.

Sally assumed the angles are complementary which they are not, she shoull have used the fact that the angles are congruent from the angle bisector

$$
\begin{aligned}
5 x-4+3 x+14 & =90 \\
8 x+10 & =90 \\
\frac{-10}{8 x} & =\frac{-10}{8} \\
\frac{8}{8} & =10 \\
m \angle B A D=5(10)-4 & =50-4=46^{\circ}
\end{aligned}
$$

b. Solve the problem correctly.

$$
\begin{aligned}
& m \angle B A D=m \angle D A C \\
& 5 x-4=3 x+14 \\
&-3 x-3 x \\
& 2 x-4=14 \\
&+4+4 \\
& \frac{2 x}{2}=\frac{18}{2} \\
& x=9 \\
& m \angle B A D=5(9)-4=41^{\circ}
\end{aligned}
$$

