

Temperature

- Average kinetic energy of particles in a substance
- Internal Energies
- include translational, rotational, and vibrational
- Symbol \Rightarrow U
- Adding energy to a substance usually
- Makes particles move faster
- Raises the temperature

Temperature Saras		
Scale	Ice point	Steam point
Fahrenheit	$32^{\circ} \mathrm{F}$	$212^{\circ} \mathrm{F}$
Celsius	$0^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Kelvin (absolute)	273.15 K	373.15 K

Temperature Conversions

$$
\begin{gathered}
T_{F}=\frac{9}{5} T_{C}+32.0 \\
T=T_{C}+273.15
\end{gathered}
$$

Linear Thermal Expansion

- If the temperature of a solid increases so does its length
- All substances expand at different rates represented by a coefficient of Linear Thermal expansion- p. 351

$$
\Delta L=\alpha L_{0} \Delta T
$$

Volume Thermal Expansion

- If the temperature of a substance increases so does its volume
- All substances expand at different rates represented by a coefficient of Volumetric Theremal expansion- p. 351

$$
\Delta V=\beta V_{0} \Delta T
$$

- Water is an exception from $4^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$

Heat

- Energy transferred between objects because of a difference in temperature
- Moves from hot to cold
- You experience heat as sensations of cold or hot
- Symbol $\equiv \Rightarrow$ Q Units $\equiv \Rightarrow$ Joules
- Heat is never contained in an object; that would be....
- Internal Energy

Specific Heat Capacity

- Quantity of energy needed to raise the temperature of 1 kg of a substance $1^{\circ} \mathrm{C}$
- Different for each substance-p. 359
- $C_{\text {water }}=4186 \mathrm{~J} / \mathrm{Kg} \cdot{ }^{\circ} \mathrm{C}$
- Assumes constant pressure

$$
c=\frac{Q}{m \Delta T} \quad Q=c m \Delta T
$$

Example Problem

- How much heat is needed to change the temperature of 50.0 g of water from $4.5^{\circ} \mathrm{C}$ to $83.0^{\circ} \mathrm{C}$?

$$
\begin{array}{|cl|}
\hline & \begin{array}{l}
m=0.0500 \mathrm{~kg} \\
\text { Example Problem } \\
T_{i}=4.5^{\circ} \mathrm{C}
\end{array} \\
\hline Q=c_{p} m \Delta T \quad \begin{array}{l}
T_{s}=83.0^{\circ} \mathrm{C}
\end{array} \\
\hline & c_{p}=4186 \mathrm{~J} / \mathrm{kg} \bullet{ }^{\circ} \mathrm{C}
\end{array}
$$

$$
Q=16,400 \mathrm{~J}
$$

Example Problem

- A 115 g mass of lead at 100.0 degrees Celsius is placed in a 220 g sample of water at $20.0^{\circ} \mathrm{C}$. What is the final temperature reached by the two substances?

Example Problem

$$
\begin{aligned}
& m_{L}=0.115 \mathrm{~kg} \\
& T_{L i}=100.0^{\circ} \mathrm{C} \quad T_{w f}=T_{L f}=T_{f} \\
& m_{w}=0.22 \mathrm{~kg} \\
& T_{w i}=20.0^{\circ} \mathrm{C}
\end{aligned}
$$

Example Problem

$$
\begin{gathered}
c_{p, w} m_{w} \Delta T_{w}=-c_{p, x} m_{x} \Delta T_{x} \\
c_{p, w} m_{w}\left(T_{w f}-T_{w i}\right)=-c_{p, x} m_{x}\left(T_{x f}-T_{x i}\right) \\
4186(.22)\left(T_{f}-20\right)=-128(.115)\left(T_{f}-100\right) \\
921 T_{f}-18400=-14.7 T_{f}+1470
\end{gathered}
$$

Example Problem

$$
921 T_{f}-18400=-14.7 T_{f}+1470
$$

$935.7 T_{f}=19870$

$$
T_{f}=21.2^{\circ} \mathrm{C}
$$

Warm-up Problem

- Vinegar, which contains acetic acid, can be used as an effective and environmentally-friendly household cleanser. Suppose you mix 0.340 kg of vinegar at 21.0 degrees Celcius with 1.00 kg hot water at 90.0 degrees Celcius in a plastic bucket. The solution of vinegar and water reaches a final equilibrium temperature of 73.7 degrees Celcius. Disregarding energy transfer as heat to the surrounding air and bucket, what is the specific heat capacity of vinegar?
- c-3810 J/kg• ${ }^{\circ} \mathrm{C}$

Example Problem
A beaker with 25 g of ice at $-12^{\circ} \mathrm{C}$ is
heated until it is water at $25^{\circ} \mathrm{C}$. How
much heat was required to complete
this change?

Example Problem

$$
\begin{array}{lr}
m=0.025 \mathrm{~kg} & Q_{\text {total }}=Q_{\text {ice }}+Q_{\text {melt }}+Q_{\text {water }} \\
T_{i}=-12^{\circ} \mathrm{C} & Q_{\text {ice }}=c_{p} m \Delta T \\
T_{f}=25^{\circ} \mathrm{C} & \\
c_{p, i}=2.09 \times 10^{3} \mathrm{~J} / \mathrm{Kg} \cdot{ }^{\circ} \mathrm{C} & Q_{\text {melt }}=m L_{f} \\
c_{p, w}=4.186 \times 10^{3} \mathrm{~J} / \mathrm{Kg} \cdot{ }^{\circ} \mathrm{C} & Q_{\text {met }} \\
L_{f, w}=3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg} & Q_{\text {water }}=c_{p} m \Delta T
\end{array}
$$

Example Problem
$Q_{\text {ice }}=c_{p} m \Delta T$
$Q_{\text {ice }}=\left(2.09 \times 10^{3} \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)(0.025 \mathrm{~kg}) 12^{\circ} \mathrm{C}$
$Q_{\text {ice }}=630 \mathrm{~J}$

Example Problem

$$
\begin{gathered}
Q_{\text {melt }}=m L_{f} \\
Q_{\text {melt }}=0.025 \mathrm{~kg}\left(3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg}\right) \\
Q_{\text {melt }}=8300 \mathrm{~J}
\end{gathered}
$$

Example Problem
$Q_{\text {water }}=c_{p} m \Delta T$
$Q_{\text {water }}=\left(4.186 \times 10^{3} \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)(0.025 \mathrm{~kg}) 25^{\circ} \mathrm{C}$
$Q_{\text {water }}=2600 \mathrm{~J}$

Example Problem

$$
\begin{gathered}
Q_{\text {total }}=Q_{\text {ice }}+Q_{\text {melt }}+Q_{\text {water }} \\
Q_{\text {total }}=630 \mathrm{~J}+8300 \mathrm{~J}+2600 \mathrm{~J} \\
Q_{\text {total }}=11500 \mathrm{~J}
\end{gathered}
$$

