Chapter 20

Electric Circuits

Electromotive Force

- emf
- Maximum potential difference provided by a power source

Current

- Rate at which electrical charges move through a given area

Example

- If the current through a light is 230 mA, how much charge passes a specific point in 12 seconds?

Conventional Current

- Charge carriers are presumed to be positive

Types of current

- Direct Current
- Charges move in only one direction
- Alternating Current
- Motion of charges changes continuously from forward to reverse

Resistance

- The opposition to the flow of current in a conductor
- Units \Rightarrow VIA $=$ Ohms (Ω)

Ohm's Law

- Resistance is constant over a wide range of potential differences

-

Example

- A 9.0 V battery is connected to a flashlight with a resistance of 200.0 ohms. What is the current running through the flashlight?
- Used to control the current

Resistance

- More collisions will mean more resistance

$-\pi$
- x --n mationlay
- x as

Resistivity

- Describes how much resistance a substance provides

- Conaductors ilal Elo リ fesieilujiv

-

Resistivity

－Temperature also affects the resistivity of a substance
－M．

－Temperature coefficient of resistivity－a

Superconductors

－Materials that have a resistance of zero at or below a critical temperature

Drift Velocity

－Electric Field sets charges in motion
－Electric field is established at almost the speed of light
－Charges travel more slowly

Drift Velocity

－Electrons do not travel in a straight line
－Repeated collisions with vibrating atoms cause zigzagging
－Despite collisions electrons still move at a net velocity －Drift velocity
－ソル』り ジもよ

Questions

－What is Work？
－What is Work measured in？
－What is Power？
－What is Power measured in？

Energy Transfer

－Circult with a battery and light
－Battery provides electrical potential energy
－Light changes it to light and heat

Electric Power

- Rate of conversion of electrical energy

Example Problem

- A 100.0 W light bulb is connected to 120 V potential difference.
- What is the resistance of the light bulb?
- What is the current flowing through the light bulb?

Example Problem

Kilo-watt hours

- Power companies charge for energy, not power
- Energy delivered in 1 hour at a constant rate of $1 \mathbf{k W}$

$$
1 \mathrm{~kW} \cdot h=3.6 \times 10^{6} \mathrm{~J}
$$

Example

- How much does it cost to operate a 60 W light bulb for 1 week if the cost of electricity is \$0.08/kW•h?

Example

Alternating Current-V

- Potential difference would oscillate between + and = peak or maximum
 values
- $\mathbf{6 0}$ Hertz or $\mathbf{6 0}$ cycles per second - Us, Canada, \& Central Ameriea
- 50 Hertz or 50 cycles per second - Mest of the rest of the werla

Alternating Current-P

- Power would also oscillate between zero and a positive maximum

Root Mean Square Current

- Average magnitude of Alternating current
- Amount of direct current that dissipates as much energy as alternating current during a complete cycle

Alternating Current-I

- Current would also oscillate between + and - peak or maximum values

Alternating Current-P

- Since power fluctuates, it is customary to consider the average power

Root Mean Square Potential Difference

- Average magnitude of alternating potential difference
- Amount of direct potential difference that dissipates as much energy as alternating potential difference during a complete cycle

Alternating Current

- Calculations for AC use the same
formulas as for DC, but
- Resistance doesn't change
$=$ Replace I and V with $\mathbf{I}_{\text {rms }}$ and $\mathbf{V}_{\text {rms }}$

Series Wiring

- Circuit that contains only one possible path
- No components will function if one element is broken

Series - Current

- Current will be the same in each Resistor

Series - Voltage

- Total potential difference will be the sum of the potential difference of all resistors
Series - Resistance

Series - Resistance

- Equivalent resistance increases as more components are added

Parallel

- Circuit that contains more than one possible path
- One path can be broken and the others still operate

Parallel - Voltage

- Each path operates Independently
- Each path uses the entire potential difference

Parallel - Current

- Each path will carry a portion of the current

Parallel - Resistance

Parallel - Resistance

- Equivalent resistance decreases as more components are added

Power in

Parallel 8 Series

- All components use some energy
- Total energy converted will include all components

Complex Resistor Combinations

- Most Circuits contain combination of series \& parallel

20-3 Complex

 Resistor CombinationsHow to solve
1.Find equivalent resistance for entire circuit

1. Combine Parallel resistors
2. Combine series resistors
3. Repeat until single resistance
4. Find all totals ($1, \Delta V, P$)
5. Work backward to find each individual value
