Differentiated Physics Objectives

Science of Physics The student will be able to:	LPS Standard	State Standard	Text
1. define the study of physics and identify activities and	Stanuaru	12.8.2	Pages 2
fields in the areas of physics.		12.0.2	2
2. describe and implement the steps of the scientific	12.2.1a	12.1.2	
method.	12.2.1a	12.1.2	
3. understand the fundamental units of the metric system		12.1.2f	2-4
and perform conversions using scientific notation.		12.1.21 12.1.3a	2-4
4. distinguish between accuracy and precision in	12.2.1b	12.1.3u 12.1.3c	
measurement and how to minimize errors in reading	12.2.10	12.1.50	
instruments (parallax).			
5. perform calculations using measurements and round	12.2.1b	12.1.3	Appendix 1
the answer to the correct number of significant digits.	12.2.10	12.1.0	ripponant i
6. interpret data in tables and graphs and recognize	12.2.1b	12.1.3	
equations that summarize the data presented.			
7. use dimensional analysis to check the validity of an		12.1.2d	4-6
expression.			
			1
Motion and Forces	LPS	State	Text
The student will be able to:	Standard	Standard	Pages
1. describe motion in terms of frame of reference,	12.2.1c	12.3.4a	27-30
displacement, time, and velocity.			
2. solve problems involving displacement, time, and	12.2.1c	12.1.3d	27-30
velocity.		12.3.4a	
3. interpret graphs depicting position vs time, and	12.2.1b	12.1.2c	46-50
velocity vs time.	12.2.1c		
4. distinguish between average and instantaneous	12.2.1c	12.3.4a	28-30
velocity.			
5. define acceleration and distinguish between	12.2.1c	12.3.4a	31-42
instantaneous, uniform, and average acceleration.			
6. solve problems involving velocity, displacement, time,	12.2.1c	12.3.4a	27-42
and acceleration			
7. understand that all freely falling objects uniformly	12.2.1e	12.3.4b	42-46
accelerate at the same rate due to gravity.			
8. know the difference between scalar and vector		12.1.2	9-17
quantities.			
9. solve problems involving vector quantities graphically		12.3.4	10-12
and mathematically.	10.0.1	10.1.01	15-16
10. describe projectile motion and solve complex	12.2.1e	12.1.2b	59-70
problems in two dimensions.	12.2.1.1	10.1.1	05.02
11. develop an understanding of Newton's 3 Laws of	12.2.1d	12.1.1a	85-92
Motion and use them to solve problems involving force,		12.3.4a	
mass, and acceleration.	12 2 1 1	10.2.41	07
12. distinguish between weight and mass.	12.2.1d	12.3.4b	97
13. define friction and solve problems involving kinetic	12.2.1d	12.1.1a	101-105
and static friction.	12.2.1g	12.3.4	

14. relate air resistance to a falling objects terminal	12.2.1d	12.1.1a	
speed.	12.2.1g	12.3.4a	
15. relate the key contributions of early scientists to the		12.8.3	
study of physics.			
16. define work, power, and energy, and solve problems	12.2.2a	12.3.5b	154-178
involving these concepts.	12.2.2b		
17. define potential energy, kinetic energy, and the	12.2.2a	12.1.1a	157-164
Work-Kinetic Energy Theorem.		12.3.5b	
18. solve problems involving potential energy, kinetic	12.2.2a	12.1.1a	154-178
energy, and the Work-Kinetic Energy Theorem.		12.1.2a	
		12.3.5b	
19. state the Law of Conservation of Energy, recognize	12.2.2b	12.3.5a	164-172
the forms energy can take, and solve problems using			
conservation of energy.			
20. define momentum in terms of an objects mass and	12.2.1d	12.3.5a	188
velocity.			
21. define impulse and how the momentum of an object	12.2.1d	12.1.1a	188
can change in terms of force and time.		12.3.4	
22. solve problems using the Impulse-Momentum		12.1.1a	188-191
Theorem.		12.3.4	
23. state the Law of Conservation of Momentum and use	12.2.1d	12.1.1a	192-201
it to solve problems involving the interaction between		12.3.4	
two objects.			
24. describe circular motion and solve problems using		12.3.4	131-137
centripetal force and centripetal acceleration.			
25. solve problems using Newton's Universal law of	12.2.1e	12.3.4b	94-97
Gravitation.		12.00.00	
~~~~~		1	

Thermodynamics and Heat	LPS	State	Text
The student will be able to:	Standard	Standard	Pages
1. define temperature and the temperature scales.	12.2.3a	12.1.2a	346-348
2. relate temperature to the kinetic energy of atoms and		12.1.2a	350-357,
molecules, and the effect it has on the expansion of		12.3.5b	
matter.			
3. define specific heat, heat of fusion, and heat of	12.2.3a	12.3.5	358-369
vaporization.	12.2.3b		
4. describe energy transfer by conduction, convection,	12.2.3a	12.3.5c	382-392
and radiation.	12.2.3b		
5. state the $1^{st}$ and $2^{nd}$ Law of Thermodynamics.		12.3.5b,d	426-429
			435-442
6. define entropy.		12.3.5d	442-446

Wave Mechanics	LPS	State	Text
The student will be able to:	Standard	Standard	Pages
1. explain the conditions of simple harmonic motion.			274-276
2. calculate the period and frequency of an object		12.3.6c	277-282
moving with simple harmonic motion.			
3. distinguish between longitudinal and transverse waves	12.2.3f	12.1.2a	459-460
and describe the components of each.			
4. describe how waves transfer energy.	12.2.3f	12.3.6a	
5. understand constructive and destructive interference.	12.2.3f	12.1.2a	495-498
		12.3.6a	

Sound and Light	LPS	State	Text
The student will be able to:	Standard	Standard	Pages
1. describe the nature of sound waves and solve	12.2.1f	12.1.2d	465-470
problems relating to frequency, wavelength, and	12.2.3f	12.3.6c	
velocity.			
2. define the Doppler effect and identify some of its		12.1.2a	475-480
applications.			
3. relate physical properties of sound waves to intensity		12.3.6a	470-475
and resonance.			
4. understand standing waves and fundamental frequency			508-510
in open and closed pipes.			
5. recognize that light is an electromagnetic wave with a	12.2.3f	12.3.6b,d	733-738
wide range of wavelengths.			
6. state the speed of light and solve problems involving	12.2.3f	12.1.3a,d	739-740
light.			
7. describe how the brightness of a light source is	12.2.3f	12.1.3e	742
affected by distance.		12.3.6a	
8. state the Law of Reflection.	12.2.3f		761-762
9. describe images formed by plane and curved mirror.		12.1.2a	763-776
10. solve problems regarding image location and size.		12.1.2b	763-776
11. describe polarization of light.	12.2.3f		746-751
12. define refraction, state Snell's Law, and solve	12.2.3f	12.1.2b	783-789
problems using Snell's Law.			
13. draw ray and image diagrams for mirrors and lenses.		12.1.2a	796-805
14. describe images formed by curved lenses.		12.1.2a	796-805
15. explain the operation of optical instruments.		12.6.2b	805-814
16. predict whether light will be refracted, or undergo		12.1.2a,d	790-793
total internal reflection.			
17. calculate the wavelength of light from double slit		12.1.2b	832-835
interference patterns.			
18. define diffraction and diffraction grating.			840-845

Electricity and Magnetism	LPS	State	Text
The student will be able to:	Standard	Standard	Pages
1. know the two types of electrical charges and how to	12.2.3c	12.3.4c	522-524
place charges on an object.			
2. know Coulomb's Law of Electrostatics and use it to		12.3.4c	527-531
solve problems in electrostatics.			
3. describe the forces between charges.		12.3.4c	527-531
4. define an electric field and know how to measure it.	12.2.3c	12.1.2a	531-536
		12.3.4d	
5. solve problems involving electric fields, forces, and		12.1.2b	531-536
charge.		12.3.4d	
6. describe where a charge resides on solid and hollow	12.2.3c	12.3.4d	540-545
conductors, and recognize the relationship between			
conductor shape and field strength.			
7. discern between electrical potential energy and			558-564
electrical potential difference.			
8. define the electrical potential difference in terms of		12.3.4d	558-560
work done in moving a unit test charge.			
9. solve problems involving electrical potential.	12.2.3c		558-564
	12.2.3d		
10. define capacitance, describe the principles of		12.3.4c	570-574
capacitance, and solve capacitance problems.			
11. define electric current and the ampere.	12.2.3d		587-589
12. write Ohm's Law and use it to solve problems	12.2.1f	12.1.3d	589-594
involving resistance, potential difference, and current.	12.2.3d		
13. define electric power and use it to explain how		12.1.3d	594-595
heaters convert electrical energy to thermal energy.			
14. describe how public energy use is measured and		12.7.3	595
solve problems involving the use and cost of electrical			
energy.			
15. describe and draw a series and parallel circuit.		12.1.2a	598-603
16. calculate current, voltage drops, and resistance in		12.1.2b	598-610
series and parallel.			
17. summarize the properties of magnets and magnetic	12.2.3e	12.3.4d	629-630
fields.			
18. describe the field around a current carrying wire.		12.3.4d	644-653
19. list the factors that determine the magnitude of the		12.3.4d	644-653
force on a wire and solve problems involving the same.			
20. explain how a changing magnetic field can produce		12.3.4d	670-675
an electric current.		12.3.6d	

## Textbook: Physics, Cutnell & Johnson, John Wiley & Sons, 2001